跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇峻德
Chun-te Su
論文名稱: 二元配對資料邊際機率比率之正確信賴下界
Exact lower confidence bounds for the ratio of marginal probabilities based on binary matched pairs data
指導教授: 陳玉英
Yuh-ing Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 97
語文別: 中文
論文頁數: 51
中文關鍵詞: Buehler方法非劣性干擾參數正確信賴界限二元配對資料
外文關鍵詞: nuisance parameter, non-inferiority, Buehler method, exact confidence bounds, binary matched pairs data
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在二元配對資料中,經常根據受測對象接受新舊兩種處理的成功機率之差異的信賴下界或上界,檢定新處理相對於舊處理是否具備非劣性或優越性。本文則根據此種成功機率比率進行上述檢定。應用Buehler方法修正邊際機率比率的三種近似信賴上界,使其最小覆蓋機率不低於信心水準,獲得此一比率的正確信賴上界。透過數值分析及模擬研究,在適當的評估標準之下,修正後的信賴域會優於修正前的信賴域。本文以數筆資料說明所提修正方法在非列性或優越性檢定的應用。


    To that for the non-inferiority or superiority of a new treatment relative to the standard treatment based on binary matched pairs data, the lower or upper bound for the difference between the two probabilities of success is usually constructed. In this article, we modify these approximate upper confidence bounds for the ratio of the two probabilities according to the Buehler method. Therefore, we obtain these exact upper confidence bounds for the ratio that can be applied to testing for the non-inferiority and superiority. Moreover, the modified confidence bounds are all better than the original ones for holding their confidence levels. Finally, we demonstrat the application of the propose confidence bounds based on some numerical data sets.

    摘要.....................................................i ABSTRACT.........................................ii 致謝辭................................................iii 目錄.....................................................v 圖目次...............................................vii 表目次..............................................viii 第一章 研究動機與目的....................1 第二章 文獻回顧................................5 2.1 邊際機率之差異...........................5 2.2 邊際機率之比率.........................10 第三章 統計方法..............................17 3.1 近似信賴上界.............................17 3.2 修正之正確信賴上界.................23 第四章 數值方法及模擬研究..........27 4.1 數值方法.....................................27 4.2 模擬研究.....................................28 第五章 實例分析..............................35 5.1 實例一.........................................35 5.2 實例二.........................................36 第六章 結論及未來研究..................39 參考文獻...........................................40

    [1] Agresti, A. and Min, Y. (2005). "Simple Improved Confidence Intervals for Comparing Matched Proportions." Statistics in Medicine, 24, 729–740.
    [2] Bartlett, M. S. (1953). "Approximate Confidence Intervals. II: More Than one Unknown Parameter." Biometrika, 40, 306–317.
    [3] Buehler, R. J. (1957). "Confidence Intervals for the Product of Two Binomial Parameters." Journal of the American Statistical Association, 52, 482–493.
    [4] Chan, I. S. F., Tang, N. S., Tang, M. L., and Chan, P. S. (2003). "Statistical Analysis of Noninferiority Trials with a Rate Ratio in Small-Sample Matched-Pair Designs." Biometrics, 59, 1170–1177.
    [5] Bonett, D. G. and Price, M. R. (2006). "Confidence Intervals for a Ratio of Binomial Proportions Based on Paired Data." Statistics in Medicine, 25, 3039–3047.
    [6] Hsueh, H. M., Liu, J. P., and Chen, J. J. (2001). "Unconditional Exact Tests for Equivalence or Noninferiority for Paired Binary Endpoints." Biometrics, 57, 478–483.
    [7] Jobe, J. M. and David, H. T. (1992). "Buehler Confidence Bounds for a Reliability- Maintainability Measure." Technometrics, 34, 214–222.
    [8] Jones, B. and Kenward, M. G. (1987). "Modeling Binary Data from a Three-Period Cross-Over trial." Statistics in Medicine, 6, 555–564.
    [9] Lachenbruch, P. A. and J., L. C. (1998). "Assessing Screening Tests: Extensions of McNemars Test." Statistics in Medicine, 17, 2207–2217.
    [10] Liu, J. P., Hsueh, H. M., Hsieh, E., and Chen, J. J. (2002). "Tests for Equivalence or Non-Inferiority for Paired Binary Data." Statistics in Medicine, 21, 231–245.
    [11] Lloyd, C. J. and Kabaila, P. (2003). "On The Optimality and Limitations of Buehler Bounds." Australian and New Zealand Journal of Statistics, 45, 167–174.
    [12] Lloyd, C. J. and Moldovan, M. V. (2007). "Exact One-Sided Confidence Limits for the Difference Between Two Correlated Proportions." Statistics in Medicine, 26, 3369– 3384.
    [13] Lu, Y. and Bean, J. A. (1995). "On the Sample Size for One-Sided Equivalence of Sensitivities Based upon McNemar’s Test." Statistics in Medicine, 14, 1831–1839.
    [14] Mcnemar, Q. (1947). "Note on the Sampling Error of the Differences Between Corrected Proportions or Percentages." Psychometrika, 12, 153–157.
    [15] Nam, J. M. (1997). "Establishing Equivalence of Two Treatments and Sample Size Requirements in Matched-Pairs Design." Biometrics, 53, 1422–1430.
    [16] Nam, J. M. and Blackwelder, W. C. (2002). "Analysis of The Ratio of Marginal Probabilities in a Matched-Pair Setting." Statistics in Medicine, 21, 689–699.
    [17] Tang, M. L., Tang, N. S., Chan, I. S. F., and Chan, B. P. S. (2002). "Sample Size Determination for Establishing Equivalence/Noninferiority via Ratio of Two Proportions in Matched-Pair Design." Biometrics, 58, 957–963.
    [18] Tang, N. S., Tang, M. L., and Chan, I. S. F. (2003). "On Tests of Equivalence via Non-Unity Relative Risk for Matched-Pair Design." Statistics in Medicine, 22, 1217– 1233.
    [19] Sidik, K. (2003). "Exact Unconditional Tests for Testing Non-Inferiority in Matched- Pairs Design." Statistics in Medicine, 22, 265–278.

    QR CODE
    :::