跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭昱鴻
Yue-Hong Kuo
論文名稱: 楔形模型之表面波頻散曲線分析研究
指導教授: 謝昭輝
C.-H. Hsieh
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 89
語文別: 中文
論文頁數: 109
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究利用二維物理模型模擬不同深度之表層並選擇物理特性適合的材質作為模型製作的材料,以傾角為三度之直角三角形及另一具不等深度之階梯形壓克力板作為表層的材質,並將壓克力板接合在鋁板上,且以鋁板模擬半空間基盤;將震源置於壓克力板邊緣,並以分析表面波(雷利波)的頻散曲線,期望找出衰減及速度和厚度變化是否有關係。
    由研究結果顯示,表面波波長與表層厚度比及速度有其相關性,尤其群速變化較相速有較佳集中性,因此我們利用群速與表面波波長及表層厚度比作為回歸及推估表層厚度之參考依據。



    1. The energy decreases linearly with increase distance between source and reciver.
    2.The group velocity to the ratio of wavelength to overburden depth can be decried by the falling empirical formula Vgroup=a(λ/h)-1+b. The velocities change sharply on the ratio of wave- length to depth in the range 3-5.

    摘 要…………………………………………..………..………..I 致 謝……………………………………………………………Ⅱ 目 錄……………………………………………………………Ⅲ 圖 目……………………………………………...…………….Ⅴ 表 目……………………………………………………………Ⅹ 符 號 說 明…………………………………………………………ⅩⅠ 第 一 章 緒 論……………………………………………….….1 1.1 研究動機…………………………………………...……………1 1.2 文獻回顧………………………………………...………………3 1.3 研究方法…………………………………………...……………5 第 二 章 實 驗 設 備……………………...………...……………6 2.1 儀器系統……………………………………………...…………6 2.2 震源……………………………………………...……………10 2.3 接收器…………………………………………….....…………12 第 三 章 縮尺模型實驗探討及模型製作………………………..14 3.1 縮尺模型實驗………………………………...……………..…14 3.2 比例因子………………………………………...………..……15 3.3 模型材料………………………………………….……………17 3.4 模 型……………………………….………....……………19 3.4.1 模型製作及相關參數…………………………………..…19 3.4.2 邊界處理及模型雜訊干擾處理……………….….………25 第 四 章 實驗結果與討論……………………………..…………27 4.1 實驗結果………………………………………….....…………27 4.2 資料處理………………………………………….……………35 4.2.1 表面波質點運動分析及範圍選取…………….………….36 4.2.2 振幅及能量分析……………………………….………….39 4.2.3 時間域速度分析……………………………….………….46 4.2.3.1 峰谷法群速分析……………………………………….46 4.2.3.1 峰谷法群相分析……………………………………….47 4.2.4 最適頻寬法速度分析……………………………………..48 4.2.5 雙站法之韋納解迴旋相速分析………………..…………54 4.3 頻散曲線………………………………………...…..…………59 4.3.1 峰谷法……………………………………...…...…………59 4.3.2 單站法之最適頻寬濾波(OBF)………………..…………62 4.3.3 雙站法相速分析之韋納解迴旋……………….…….……65 4.4 速度變化與波長及深度的關係…………………….…………68 4.5 經驗公式逆推…………………………………...…..…………70 4.6 野外施測及運用……………………………………..……...…79 第五章 結 論……………………………………………....……83 參考文獻………………………………………………………………..85 附 錄………………………………………………………………87

    Biot, M. A., 1956a. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, J. Acoust. Soc. Am., 28, 168-178.
    Biot, M. A., 1956b. Theory of Propagation of Elastic Waves in a Fluid- Saturated Porous Solid. II. High-Frequency Range, J. Acoust. Soc. Am., 28, 179-191.
    Brigham, E. Oran, 1974. The fast Fourier transform. Englewood Cliffs, N. J: Prentice-Hall
    Chûji Tsuboi, 1928. Experimental studies on elastic waves, Bulletin of the Earthquake Research Institute, 4, 9-20.
    Dziewonski A., S. Bloch and M. Landisman, 1969. A technique for the analysis of transient signals, Bull. Seism. Soc. Am., 59, 427-444.
    Feng and Teng, 1983. An error analysis of frequency-time analysis, BSSA, 73, 143-155.
    Francois Glangeaud, Jean-Luc Mary, Jean-Louis Lacoume, ĴÉÔME MARS, and Marianne Nardin , 1999. Dispersive seismic wave in geophysics, European Journal of Environmental and Engineering Geophysics, 3, 265-306.
    Glangeaud F., Mari J. L., Lacoume J. L., Mars J., Nardin M., 1999. Dispersive seismic waves in geophysic, EEGS journal, 3, 265-306.
    Gupta, R. N., and Kisslinger, C., 1964. Model study of explosion-generated Rayleigh wave in a half-space: Bull. Seism. Soc. Amer., 54, 475-484.
    Harkrider, D. G., 1964. Surface waves in multilayered elastic media. 1. Rayleigh and Love waves from buried sources in a multilayered elastic half-space, Bull. Seism. Soc. Am., 54, 627-679.
    Haskell, N. A., 1953. The dispersion of surface-waves on multilayered media, Bull. Seism. Soc. Am., 43, 17-34.
    Herrin, E. and T. Goforth, 1997. Phase matched filters: Application to the study of Rayleigh waves, Bull. Seism. Soc. Am., 67, 1250-1275.
    Howard E. Tatel, 1954. Note on the nature of a seismogram-Ⅱ, Journal of Geophysical Research, 59, 289-294.
    Inston, H. H., P. D. Marshall and C. Blamey, 1971. Optimization of filter bandwidth in spectral analysis of wave trains,
    Geophys. J. R. astr. Soc., 23, 243-250.
    Jenkins, Gwilym M, and Donald G. Watts, 1968. Spectral analysis and its applications. San Francisco: Holden-Day.
    Jiajun Zhang, 1998. Inversion of surface wave spectra for source parameter of large earthquake using a spherical earth models, Physics of the Earth and Planetary Interiors, 107, 327-350.
    John H. Healy and Frank Press, 1960. Two-dimensional seismic models with continuously variable velocity depth and density functions, Geophysics, 25, 987-997.
    Keilis-Borok, V. I., 1989. Seismic Surface Waves in a Laterally Inhomogeneous Earth, Kluwer Academic Publishers, 294pp.
    Ladisman, Dziewonski, and Sato 1969. Recent improvements in the analysis of surface wave observation, G. J., 17, 369-403.
    Papoulis, Athanasios, 1962. The Fourier integral its applications, New York: McGraw-Hill
    MacBeth, C. D., and P. W. Burton, 1985. Upper crustal shear velocity models from higher mode Rayleigh wave dispersion in Scotland, Geophys. J. R. astr. Soc., 83, 519-539.
    Misiek R. , A. liebing, A. Gyulai, T. Ormos, M. Dobroka and Dresen, 1995. A joint inversion algorithm to process geoelectric and surface wave seimic data Part I, application, Geophysical Prospecting, 43, 135-156.
    Misiek R., A. Liebing, A. Gyulai, T. Ormos, M. Dobroka and Dresen, 1997. A joint inversion algorithm to process geoelectric and surface wave seismic data Part II, application, Geophysical Prospecting, 45, 65-85.
    Murphy, J. R., 1981. Near-field Reyleigh waves from surface explosions, Bull. Seism. Soc. Am., 71, 223-248.
    Panza, G. F., F. A. Schwab, and L. Knopoff, 1972. Channel and crustal Rayleigh waves, Geophys. J. R. astr. Soc., 30, 273-280.
    Sorge W. A., 1963. Rayleigh-wave motion in an elastic half-space, Geophysics, 30, 97-101.
    Wolfgang Friederich, 1998. In furring the Orientation-distribution Function from Observed Seismic Anisotropy:General Considerations and Inversion of Surface-wave Dispersion Curves, Pure and Applied Geophysics, 151, 649-667.
    謝昭輝, 1986. 物理震測模型研究, 國立中央大學地球物理研究所.
    張永孚, 1995. 散射衰減與尾波特性之二維物理模型研究, 博士論文, 國立中央大學地球物理研究所.
    陳洲生, 1978. 折射震測在工程上運用的研究, 碩士論文, 國立中央大學地球物理研究所.
    鍾仁光, 1995. 以有限單元模擬短週期表面波生成特性之震源效應, 博士論文, 國立中央大學地球物理研究所.
    胡家富, 段永康, 胡毅力, 傅竹武, 溫一波, 吳小平, 吳潤海, 許昭永, 1999. 利用Rayleigh波反演淺土層的剪切波速度構造, 地球物理學報, 第42卷, 第三期.

    QR CODE
    :::