跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊智宇
Chih-Yu Yang
論文名稱: 希爾伯特-黃變換(Hilbert-Huang Transform)結合主成份分析與類神經網路在齒輪故障程度之診斷
Application of Hilbert-Huang Transform to the Gear Fault Level Diagnosis Based on Principal Component Analysis and Neural Network
指導教授: 吳天堯
Tian-Yao Wu
黃衍任
Yean-Ren Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 121
中文關鍵詞: 類神經網路主成份分析嚴重程度故障診斷齒輪箱希爾伯特-黃變換
外文關鍵詞: Hilbert-Huang Transform, gearbox, fault diagnosis, Principa lComponent Analysis, Neural Network
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用希爾伯特-黃變換(Hilbert-Huang Transform)針對齒輪箱的定轉速實驗進行故障診斷,並以時頻分析來判斷故障嚴重程度的大小。針對齒輪箱常見的故障:斷齒、磨損以及質量不平衡等等,先將複雜訊號分解成若干個IMF,再以包絡線分析從中提取故障特徵,作為診斷的依據。
      將時域訊號及HHT分析的結果中提取若干個特徵,利用主成份分析法將維度化簡,得到簡化後的綜合指標。將綜合指標當作類神經網路分類的輸入,分析的結果顯示,透過主成份降維後可以提高類神經網路的準確率。


      In this study, Hilbert-Huang Transform (HHT) is utilized for fault diagnosis under fixed rotating speed. The time-frequency analysis is to identify the severity of the gear faults. The experimental cases include the common faults of the gearbox, such as broken teeth, gear wearing and gear unbalance. The complicated vibration signals due to faults are first decomposed into a number of Intrinsic Mode Functions (IMFs), and then the envelope analysis is employed to extract the fault characteristics.
      Specific features of time-domain signals as well as the results of HHT analysis are extracted for Principal Component Analysis (PCA) to achieve the characteristic dimension reduction. The composite indicators obtained from PCA are used as the inputs of Neural Network to classify the different gear faults. The analysis results show that through PCA, the characteristic dimension can be reduced and the classifying accuracy of neural network can be also improved.

    摘要 I Abstract II 誌謝 III 目錄 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 4 第二章 希爾伯特-黃變換理論 10 2-1 希爾伯特-黃變換(Hilbert-Huang Transform, HHT) 10 2-2 瞬時頻率(Instantaneous Frequency) 10 2-3 固有模態函數(Intrinsic Mode Functions, IMF) 13 2-4 經驗模態分解法(Empirical Mode Decompostion, EMD) 14 2-5 希爾伯特時頻譜(Hilbert Spectrum)與邊際頻譜(Marginal Spectrum) 20 2-6 集成經驗模態分解法(Ensemble Empirical Mode Decompostion, EEMD) 21 2-7 後處理集成經驗模態分解法(Post processing of EEMD) 22 2-8 包絡線分析(Envelope Analysis) 24 2-8-1 振動訊號之調制(Modulation)與解調(Demodulation) 24 2-8-2 齒輪的振幅調制與頻率調制 25 2-8-3 調制訊號之包絡線分析方法 26 2-8-4 故障診斷之包絡線分析法 27 第三章 資料分析方法 29 3-1 主成份分析(Principal Component Analysis, PCA) 29 3-1-1 主成份分析原理 29 3-1-2 主成份分析的數學模型 31 3-1-3 主成份分析計算步驟 32 3-2 類神經網路(Artificial Neural Network) 35 3-2-1 類神經網路架構 36 3-2-2 學習規則 37 3-2-3 倒傳遞(Backpropagation)神經網路 37 第四章 實驗架構與實驗方法 41 4-1 齒輪故障類型 41 4-1-1 正常狀態 41 4-1-2 斷齒 42 4-1-3 齒輪磨損 43 4-1-4 齒輪質量不平衡 44 4-2 齒輪的振動機制 45 4-3 實驗架構 45 4-3-1 實驗平台 45 4-3-2 實驗設備與規格 46 4-4 實驗方法 51 4-5 頻率響應實驗 54 第五章 實驗結果 55 5-1 故障訊號處理及分析 55 5-1-1 齒輪正常狀態 56 5-1-2 齒輪斷齒狀態 66 5-1-3 齒輪磨損狀態 71 5-1-4 齒輪質量不平衡狀態 79 5-2 故障嚴重程度比較 87 5-3 維度化簡 89 5-3-1 特徵抽取 89 5-3-2 利用主成份分析法降維 92 5-4 類神經網路分類 94 第六章 結論與未來展望 104 參考文獻 106

    [1]Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society London A, Vol.454, pp.903-995, 1998
    [2]Wu, Z. and Huang, N. E., “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1-41, 2009
    [3]Yu, D., Yang, Y. and Cheng, J., “Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis , ”Measurement, Vol.40, pp.823-830, 2007
    [4]Yu, D., Yang, Y. and Cheng, J., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis,” Mechanical Systems and Signal Processing, Vol.21, pp.668-677, 2007
    [5]Wu, T. Y. and Chung Y. L. , “Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach,” Smart Materials and Structures, Vol.18, 095004, PP.13, 2009
    [6]Wu, T. Y., Chung Y. L. and Liu, C. H., “Looseness Diagnosis of Rotating Machinery Via Vibration Analysis Through Hilbert-Huang Transform Approach,” Journal of Vibration and Acoustics, 2010
    [7]Wu, T. Y., Hong, H. C., Fu, H. M., and Chung, Y. L., “Applications of Ensemble Empirical Mode Decomposition (EEMD) and Auto-Regressive (AR) Model for Diagnosing Looseness Faults of Rotating Machinery,” Proceedings of The 26th National Conference on Mechanical Engineering, B21-005, 2009
    [8]Lei, Y., He, Z. and Zi, Y., “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, Vol. 23, pp. 1327–1338, 2009
    [9]Yu, D., Yang, Y. and Cheng, J., “A roller bearing fault diagnosis method based on EMD energy entropy and ANN,” Journal of Sound and Vibration, Vol.294, pp.269-277, 2006
    [10]Yu, D., Yang, Y. and Cheng, J., “A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM,” Measurement, Vol.40, pp.943–950, 2007
    [11]Sun. W., Chen, J. and Li, J., “Decision tree and PCA-based fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, Vol.21, pp.1300-1317, 2007
    [12]Chang, Y. W., Wang, Y. C., Liu, T. and Wang, Z. J., “Fault diagnosis of a mine hoist using PCA and SVM techniques,” J China Univ Mining & Technol, Vol.18, pp. 0327–0331, 2008
    [13]Lei, Y. and Zuo, M. J., “Gear crack level identification based on weighted K nearest neighbor classification algorithm,” Mechanical Systems and Signal Processing, Vol.23, pp.1535-1547,2009
    [14]Lei, Y., Zuo, M. J., He, Z. and Zi, Y., “A multidimensional hybrid intelligent method for gear fault diagnosis,” Expert Systems with Applications, Vol.37 pp.1419–1430,2010
    [15]Cohen, L. “What is a multi-component signal,” IEEE ICASSP-92, Vol.5, pp.113-116,1992
    [16]Loughlin, P. J. and Davidson, K. L., “Modified Cohen-Lee time-frequency distributions and instantaneous bandwidth of multicomponent signals,” IEEE Transactions on Signal Processing, Vol.49, NO. 6, pp.1153-1165, 2001
    [17]Pearson, K., “On Lines and Planes of Closest Fit to Systems of Points in Space,” Philosophical Magazine, Vol. 2, NO. 6, pp. 559–572,1901
    [18]Chen, W. Y. and Chung, C. H., “Robust poker image recognition scheme in playing card machine using Hotelling transform, DCT and run-length techniques,” Digital Signal Processing,Vol.20,pp.769–779,2010
    [19]羅華強,“類神經網路-MATLAB的應用,” 2001
    [20]F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, Vol.65, NO. 6, , pp.386-408, 1958

    QR CODE
    :::