跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林正祥
Cheng-Hsiang Lin
論文名稱: 光電訊號處理系統於生醫檢測之開發與應用
Electro-Optical Signal Processing Systems in Bio-medical Detection
指導教授: 葉則亮
Tse-Liang Yeh
陳顯禎
Shean-Jen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 105
中文關鍵詞: 光電倍增管表面電漿共振外差干涉儀全域
外文關鍵詞: heterodyne interferometer, SPR, full field, PMT
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生醫檢測上,由於生物分子本身的重量或體積極微小,或偵測之生理濃度極低,朝向更高偵測極限(detection limit)的目標發展是有其必要性,有鑑於此,本論文利用高靈敏度的感測轉換元件(螢光標記或非標記)與發展精密的光電訊號處理器,來提高量測系統的解析度。
    首先開發出ㄧ個應用於生醫檢測的光電偵測儀,以光電倍增管(photomultiplier tube,PMT)作為光感測器,將類比的電流轉電壓放大器、數位電路以及通用串列傳輸介面(universal serial bus,USB)成功整合在一起,目前此系統已成功量測10-16W的微小光訊號,並已安裝於冷光儀與螢光掃描儀上。
    另外,利用電泳微流體生物晶片來驗證振幅調變搭配鎖相放大技術,來提高系統的訊噪比,其中並以雙相位鎖相放大技術偵測其螢光訊號,成功將螢光濃度偵測極限相較於傳統系統提高二十倍以上。鎖相放大器為非常關鍵的光電鍵儀器,故以實驗室自行發展的數位訊號處理(digital aignal processing,DSP)應用卡為基礎,搭配週邊電路完成數位鎖相放大器的原型機,並結合USB 2.0高速傳輸介面作為與電腦端的傳輸介面,實現具有即時資料傳輸功能的數位鎖相放大器。
    運用上述關鍵光電訊號處理器,我們在光電生醫量測儀器上的開發,鎖定於與表面電漿共振(surface plasmon resonance,SPR)感測技術結合,開發出不需標記、高靈敏度的表面電漿共振共光程(common-path)外差式干涉儀(heterodyne interferometer),並以氮氣和氬氣校正系統的解析度,此技術目前可偵測至1×10-6以下的折射係數改變量。另外,我們也比較磁光調變器和電光調變器所調製出的外差光源偵測上的差異性。最後,將單點量測系統推廣至二維全域式(full-field)的量測系統。


    Owing to the tiny molecular weight and volume of biomolecules and very low physiologic concentration in biomolecular interaction analysis, it is important to improve the detection limit of biosensing. In this thesis, we integrate high sensitivity transducers (with or without fluorescence label) and developed electro-optical (E-O) signal processors to enhance the resolution of optical metrology system.
    First, we develop an E-O detector in bio-medical detecting application. The E-O detector combines with a photomultiplier tube sensor and a developed circuit board including the analog current amplifier, analog to digital converter, and universal serial bus (USB) interface. The detector now can measure the light power down to 10-16W and has been used in the bio-luminescence system and biochip fluorescent scanning reader.
    Moreover, a microfluid biochip is used to verify and the signal-to-noise ratio of the fluorescent signal is improved with the amplitude modulation lock-in amplifying technique with the help of dual-phase lock-in amplifier, and therefore the detection limit of the fluorescence measurement is improved with 20 times better then that of a conventional system. Lock-in amplifier is a key E-O device, so, we develop a home-made digital lock-in amplifier based on a home-made 32-bit digital signal processing board with USB 2.0 interface to realize the digital lock-in amplifier technique in real-time data transmission.
    To develop label-free biosensing systems, we focus on high sensitivity surface plasmon resonance (SPR) biosensing to build a common-path SPR heterodyne interferometer with the above E-O devices. The SPR interferometer can detect the refractive index change of better than 10-6 by testing the nitrogen and argon gases. Besides, we compare the difference between the magneto-optical and E-O modulation light sources. Finally, a prototype of full-field heterodyne interferometer is developed.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XIV 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與方法 4 1-4 論文架構 5 第二章 冷光儀之關鍵光電技術 7 2-1 光電流偵測 7 2-2 光電倍增管偵測系統開發 12 2-2-1 系統架構 12 2-2-2 光電倍增管 13 2-2-3 電源供應區塊 15 2-2-4 電流轉電壓放大器 15 2-2-5 邏輯時序控制 17 2-2-6 類比數位轉換器 18 2-2-7 FIFO記憶體 20 2-2-8 通用串列傳輸介面 20 2-2-9 增益控制 21 2-3 結果與討論 21 第三章 電泳微流體生物晶片 26 3-1 微流體晶片 26 3-2 光電偵測系統 31 3-3 晶片處理流程 33 3-4 實驗結果 35 第四章 數位鎖相放大器之研製 38 4-1 鎖相放大器原理 38 4-2 模擬分析 40 4-3 硬體設計 43 4-3-1 DSP發展板 43 4-3-2 USB 2.0傳輸介面 48 4-3-3 濾波電路 50 4-3-4 鎖相迴路 51 4-4 韌體及軟體設計 53 4-4-1 資料傳輸機制 53 4-4-2 PC與硬體之傳輸協定 54 4-4-3 浮點資料格式 59 4-5 測試結果 60 第五章 表面電漿共振外差干涉儀 64 5-1 表面電漿共振原理 64 5-2 外差干涉原理 70 5-3 外差光源 73 5-4 磁光調變系統 75 5-5 電光晶體調變系統 77 5-5-1 電光調變器原理 77 5-5-2 電光調變器驅動器製作 81 5-6 系統架構 86 5-7 實驗結果 88 第六章 全域式外差干涉儀 89 6-1 系統架構 89 6-2 5×5光二極體陣列訊號放大電路設計 91 6-2-1 光二極體陣列 91 6-2-2 多通道電流轉電壓放大器 92 6-3 實驗結果 96 6-4 系統改進方向 98 第七章 結論 100 參考文獻 102

    [1] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988.
    [2] B. Liedberg, C. Nylander, and I. Lundsr, “Surface plasmon resonance for gas detection and biosensing,” Sensor and Actuators B 4, 299-304, 1983.
    [3] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881, 1957.
    [4] C. J. Powell and J. B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev. 118, 640, 1960.
    [5] S.-J. Chen, F.-C. Chien, G.-Y. Lin, and K.-C. Lee, “Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles,” Optics Letters 29, 1390-1392, 2004.
    [6] C. E. Jordan and R. M. Corn, “Surface plasmon resonance imaging measurement of electrostatic biopolymer adsorption onto chemically modified gold surface,” Anal. Chem. 69, 1449-1456, 1997.
    [7] P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sensor and Actuators A 85, 189-193, 2000.
    [8] A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665-1667, 2000.
    [9] H. P. Ho and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sensors and Actuators B 96, 554-559, 2003.
    [10] W.-C. Juo, C. Chou, and H.-T. Wu, “Optical heterodyne suface-plasmon resonabce biosensor,” Optics Letters 28, 1329-1331, 2003.
    [11] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3-15, 1999.
    [12] K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics, 25-78, 1987.
    [13] A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New tork, 1984.
    [14] E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23A, 2135-2136, 1968.
    [15] I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sensors and Autuators B 54, 98-105, 1999.
    [16] B. Chadwick and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys. 32, 2716-2717,1993.
    [17] V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, and P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor application,” Quantum Electronics 28, 444-448, 1998.
    [18] M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, 3rd Ed, Saunders College, 1995.
    [19] I. Burda, S. Simon, M. Todica, G. Cristea, G. Cerbanic, and L. Cociu, “Design consideration and performance of digital lock-in amplifier with 68HC11 microcontroller,” SPIE Proc. 4068, 764-769, 2000.
    [20] F. Barone, E. Calloni, L. DiFiore, A. Grado, L. Milano, and G. Russo, “High-performance modular digital lock-in amplifier,” Rev. Sci. Instrum 66, 3697-3702, 1995.
    [21] A. A. Freschi and J. Frejilich, “Adjustable phase control in stabilized interferometry,” Optics Letters 20, 635-637, 1995.
    [22] I. M. Akhmedzhanov, D. V. Baranov, and E. M. Zolotov, “Object characterization with a differential heterodyne microscope,”,J. Opt. A: Pure Appl. Opt. 5, s200-s206, 2003.
    [23] Y. Surrel, “Some metrological issues in optical full field techniques,” SPIE Proc. 4777, 220-231, 2002.
    [24] M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Optics Letters 29, 1200-1202, 2004.
    [25] M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Non-continuous fringe pattern demodulation using a digital phase locked loop algorithm,” SPIE Proc. 4777, 259-270, 2002.
    [26] W. Zhaoxia, R. Rui, L. Zhiquan, “A novel heterometer for measuring suface roughness,” SPIE Proc. 4777, 415-419, 2002.
    [27] K. Motomura, T. Hoshimizu, K. Harada, H. Ueno, and M. Mitsunaga, “Subkilohertz linewiths measured by heterodyne-detected coherent population trapping in sodium vapor,” Optics Letters 29, 1141-1143, 2004.
    [28] M.-S. Kim, J.-Y. Lee, and S.-W. Kim, “Super-heterodyning phase measurement for heterodyne inyerferometry,” SPIE Proc. 4777, 401-408, 2002.
    [29] M.-H. Chiu, J.-Y. Lee, and D.-C. Su, “Complex refractive-index measurement based on Fresnel’s equations interferometry,” Appl. Opt. 38, 4047-4052, 1999.
    [30] M.-H. Chiu, J.-Y. Lee, and D.-C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Appl. Opt. 36, 2936-2939, 1997.

    QR CODE
    :::