跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖淑君
Shu-Jiun Liao
論文名稱: 運用動態分群方法在市場區隔上
Using dynamic clustering method at marketing segmentation-in Telecom industry
指導教授: 何應欽
Ying-Chin Ho
許秉瑜
Ping-yu Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 91
語文別: 中文
論文頁數: 37
中文關鍵詞: 資料採礦集群分析電信產業
外文關鍵詞: Single link algorithm
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受到全球電信事業自由化及國內電信市場在1997年全面開放行動電話通信業務的衝激,市場競爭的型態受到大幅改變。在多家業者加入競爭及消費者對無線通信服務需求熱切下,使得電信產業呈現一片蓬勃景象。然而,隨著行動電話市場的飽和,各家業者均面臨客戶嚴重流失問題。
    為了能維持市場佔有率,各業者無不卯足全力,提供各種促銷方案來吸引客戶,然而前提就是要先做好市場區隔,以往在消費者分群的研究上,大多是將有相似消費行為的顧客來作為分群的根據,但顧客的消費行為,常會因為不同時期而有所變動,所以在消費者分群上,也必須常常跟著變動,而以往的作法是每當有消費者的行為改變,就必須將全部的消費者重新分群,不論變動的人數是多是少,因而常會耗費龐大的成本,因此本研究提出一個新的演算法single-link incremental algorithm,能夠視實際變動情況來調整群內變動的資料點,而不用將全部的資料點重新分群,不但能節省龐大的成本,又能藉由正確的分群資訊了解每一群消費者的真正需求,提高顧客對促銷方案的接受度。


    Since 1997, the mobile telecom industry in Taiwan has expanded rapidly to a liberalized environment; the mobile telecom market has drastic competition. Nowadays as the mobile telecom market is being saturated, those carrier companies are confronted with high customer churn rate. 
    For reducing the customer churn rate, every telecom company try to provide many promotional plans. But it is difficult to choose suitable plan for customers who change their purchasing behavior quickly. Sometimes, only few customers changed, but we have to re-cluster the whole customer data. It is costly and inefficient. In this paper, we introduce a new cluster algorithm, called single-link incremental algorithm. It only to adjust data objects for real change situation in intra-cluster which not to re-cluster again for all data objects. Using this new method, single-link incremental algorithm, not only can reduce cost, but also gain the right market segmentation information immediately.

    Contents 摘要 I English abstract II Contents III List of Figures V List of Tables V Chapter I Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Objective 2 1.4 Research Process 2 1.5 Thesis Organization 3 Chapter II Literature Review 4 2.1 Hierarchical Methods 5 2.1.1 Agglomerative hierarchical clustering 5 2.1.2 Divisive hierarchical clustering 7 2.2 Partitioning Methods 7 2.2.1 Squared Error 7 2.2.2 Graph-Theoretic 8 2.3 Model-based Methods 8 2.3.1 Statistical approach 8 2.3.2 Neural network approach 9 2.4 Density-based Methods 10 2.5 Grid-based Methods 11 2.6 Summary 12 Chapter III Methodology 13 3.1 Overview 13 3.2 Single-link algorithm 13 3.3 Single-link incremental algorithm 16 3.3.1 Introduce single-link incremental algorithm 16 3.3.2 Moving situations 20 3.3.3 The flowchart is as follows 22 3.3.4 Examples 23 Chapter Ⅳ Experiment 28 4.1 Environment 28 4.2 Experiment 29 4.2.1 Variation volume analysis 29 4.2.2 Performance evaluation 31 Chapter Ⅴ Conclusions & Suggestions 34 5.1 Conclusion 34 5.2 Suggestion 34 Reference 35 Appendix 38 List of Figures Figure 1.1 Research Flowchart 2 Figure 2.1 A taxonomy of clustering approaches 4 Figure 3.1 Illustration of SLI algorithm 16 Figure 3.2 The flow chart of SLI algorithm 22 Figure 4.1 Raw data distribution 29 Figure 4.2 Testing data distribution 30 Figure 4.3 The volume of moving objects 31 Figure 4.4 Evaluation of two algorithms in October 31 Figure 4.5 Evaluation of two algorithms in November 32 Figure 4.6 Evaluation of two algorithms in December 32 Figure 4.7 Evaluation of two algorithms in January 32 List of Tables Table 3.1 Situations of moving objects 20

    Reference
    [1] A.K. Jain , M.N. Murty and P.J. Flynn “Data Clustering:A Review”, ACM Computing
    [2] Ankerst M., Breunign M., Kriegel H.p. and Sander J., “OPTICS: Ordering points to identify the clustering structure,” In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pp.49-60, Philadelphia, PA, June 1999
    [3] A. Hinneburg and D. A. Keim, "An Efficient Approach to Clustering in Large Multimedia Databases with Noise", KDD''98, New York, Aug. 1998.
    [4] Ester M., Kriegel H.P., Sander J. and Xu x., “Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, “In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD’94), pp.226-231, Portland, OR, Aug.1996
    [5] Fisher, D.H.” Knowledge acquisition via incremental conceptual clustering,” Machine Learning, 2, pp.139-172,1987
    [6] Guha S., Rastogi R. and Shim K., “CURE: An efficient clustering algorithm for large databases,” In Proc. 1998 ACM-SIGMOD Int. Conf. Management of DATA (SIGMOD’98), pp.73-84, Seattle, WA, June 1998
    [7] Guha S., Rastogi R. and Shim K., “ROCK: A Robust Clustering Algorithm For Categorical Attribute,” In Proc. 1999 Int. Conf. data Engineering (ICDE’99) pp.512-521, Sydney, Australia, Mar.1999
    [8] Gotileb, g. C. and Kumar, S. “Semantic clustering of index terms“, J. ACM 15, pp.493-513, 1968
    [9] Han J. and Kamber M., “Data Mining: Concepts and techniques”, Morgan Kaufmann, 2000.
    [10] J. H.Gennari, P. Langley, and D. Fisher” Models of Incremental Concept Formation”, Artificial Intelligence, 40,11-61, 1989
    [11] Karypis G., Han E.H. and Kumar V., “CHAMELEON: Hierarchical Clustering Using Dynamic Modeling,” IEEE Computer, Vol. 32, No. 8, pp.68-75, (1999)
    [12] Kaufman, L. and Rousseeuw, P.J. (1986), Clustering Large Data Sets, in Pattern Elsevier/North-Holland, 425-437
    [13] Kaufman L. and Rousseeuw PJ, “Finding Groups in Data: An Introduction to Cluster Analysis,” John wiley &Sons, 1990.
    [14] MacQueen J., “Some Methods for Classification and Analysis of Multivariate Observations,” Berkeley Symp. Math. Stat. and Prob., Vol. 1, pp.281-297, 1967
    [15] Ng R. and Han J., “Efficient and Effective Clustering Method for Spatial Data Mining,” In Proc. 1994 Int. conf. Very Large Databases (VLDB’94), pp.144-155, Santiago, chile, Sept. 1994
    [16] Ozawa, K. “A Stratificational overlapping cluster scheme”, Pattern Recogn. 18, pp.279-286, 1985
    [17] Rose, K., gurewitz, E., and Fox, G. C. “Deterministic annealing approach to constrained clustering”, IEEE Trans. Pattern Anal. Intell.15, pp.785-794, March.1993
    [18] R. Carraghan and P.M. Pardalos. An exact algorithm for the maximum clique problem. Operations Research Letters 9,pp.375-382, 1990.
    [19] Sheikholeslami G., Chatterjee S., and Zhang A., “WaveCluster: A multi-resolution clustering approach for very large spatial databases,” In Proc. 1998 Int. Conf. Very Large Databases (VLD’98), pp.428-439, New York, Aug.1998
    [20] Stutz and P. Cheeseman, “Bayesian Approach to Classification,” In Maximum Entropy and Bayesian Methods, Cambridge, 1994, eds. J. Skilling and S. Sibisi. Dordrecht, The Netherlands: Kluwer Academic Publishers. 315
    [21] Wang W., Yang and Muntz R., “A Statistical Information grid Approach to Spatial Data Mining, “In Proc. 1997 Int. Conf. Very Large Data Bases(VLDB’97), pp.186-195, Athens, Greece, Aug.1997
    [22] Zhang T., Ramakrishnan R. and Livny M., “BIRCH: An Efficient Data Clustering Method for very Large Databases,” In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data(SIGMOD’96),pp.103-114,1996
    [23] Zahn, C. T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Compute. C-20, pp.68-86, Apr.1971
    [24] http://www.dcs.gla.ac.uk/~iain/keith/data/concepts/34.htm
    [25] http://www.clustan.com/hierarchical_cluster_analysis.html
    [26]http://met.psu.edu/~arnottj/newclusterpage/Cluster_Analysis_Description.html

    QR CODE
    :::