| 研究生: |
杜明 Pierre-Claude Duméus |
|---|---|
| 論文名稱: |
海地太子港都市區產生的城市固體廢物的能源潛力 Energy potential of the municipal solid waste generated in the Port-au-Prince metropolitan area of Haiti |
| 指導教授: |
廖萬里
Wan-Li, Liao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 國際永續發展碩士在職專班 International Environment Sustainable Development Program |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 都市固體廢棄物 、簡易多屬性決策評估技術 、廢棄物能源回收技術 、厭氧消化法 、掩埋回收氣體法 |
| 外文關鍵詞: | Municipal solid waste, Simple Multi-Attribute Rating Technique (SMART), WtE technology, Anaerobic digestion, landfill gas to energy |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海地太子港都會區面臨嚴重的環境衛生問題,主要是由於缺乏妥善的都市固體廢物管理制度及尚無任何廢物回收或處理與處置設施。除此之外,海地在能源供應方面也面臨危機。迄今海地百分之75的能源是使用薪柴和木炭,該類能源的消耗有80%用於家庭的炊事上;而海地居民的電氣化只有38%。這些情況將使海地的環境加速惡化。
官方研究文件顯示,每天有653公噸都市固體廢物被運往太子港的露天垃圾掩埋場填埋,相信應該仍有數百噸垃圾無處可去。依據收集之調查資料發現,海地都市垃圾的有機成分達73.8% (重量比),垃圾含水量高達73%。本研究旨在探討適用於海地的廢物能源回收技術,並估算太子港大都會區垃圾回收其潛在能源的數量。
本研究採用多屬性決策評估技術 (SMART),指定的評估基準是能源潛力、環境效益、經濟效益和社會效益,並邀請七位環境工程與能源方面的專家參與評估三個廢棄物能源回收技術:焚化法、厭氧消化法及掩埋氣體回收法。專家決策評估結果以厭氧消化法被賦予最高的偏好,但只比掩埋氣體回收法稍高一點。本研究基於經濟效益和固體廢物最終處置的考慮,最終決定選擇掩埋氣體回收法應用於太子港大都市區都市廢棄物之能源回收技術。
經過計算,自掩埋場回收氣體的能源於16年內可產生約2.23億立方公尺的甲烷,足以產生約5.85億千瓦的電力,這種能源出售給電網,使海地太子港市區居民的用電率提高約5%。
The Port-au-Prince metropolitan area of Haiti has serious environmental sanitation issues due to the lack of proper municipal solid waste management system and the absence of any waste recovery or treatment and disposal facilities. In addition, the nation is also facing an energy crisis in the supply of energy resources. Today 75 percent of Haiti’s energy consumption is met by fuel wood and charcoal of which 80% are used in households especially for cooking, and the electrification rate is merely 38% of the people who have access to electricity. These situations will contribute to accelerate the degradation of the environment in Haiti.
Official studies revealed that 653 tons of municipal solid waste (MSW) are delivered daily into the open dumping site in Port-au-Prince, and it is believed that there still have hundreds of tons of refuse that are gone nowhere. This study found that the composition of MSW stream in Haiti has high biodegradable organic content by 73.8% by weight, and 73% by weight of moisture content. This research aims to estimate the amount of potential energy of MSW in the Port-au-Prince metropolitan area that can be recovered by using the most feasible and economical Waste-to-Energy (WtE) technology.
A Simple Multi-Attribute Rating Technique (SMART), which is used to figure out multiple attribute in the identified problems associated with a number of alternatives and discrete preference rating, was processed to assess three (3) WtE technologies: incineration, anaerobic digestion, and landfill gas to energy. The specified evaluation criteria are energy potential, environmental, economic, and social benefits. By using the SMART for supporting decision making, seven experts in the fields of environmental engineering and energy participated in refining the criteria and selecting the WtE technologies in their evaluation. The anaerobic digestion was given the highest preference, but only was a little bit higher than the technology “landfill gas to energy”. However, based on the consideration of economy and solid waste disposal, the final decision in this study selected the landfill gas to energy instead of anaerobic digestion for Port-au-Prince metropolitan area.
Through the estimation from the recovery of a landfill gas to energy system, approximately 223 million cubic meters of methane can be generated over 16 years in the landfill, which can generate about 585-millions kilowatt-hours of electricity. This energy can be sold to the power grid to increase to about 5% the access rate of electric power for residents of the Port-au-Prince metropolitan area in Haiti.
Lozano Gracia, Nancy; Garcia Lozano, Marisa. 2017. Haitian cities: actions for today with an eye on tomorrow (French). Washington, D.C.: World Bank Group. Available online: http://documents.worldbank.org/curated/en/791721516635425309/Haitian-cities-actions-for-today-with-an-eye-on-tomorrow.
National Renewable Energy Laboratory sand HDR Engineering for USAID. “Haiti Feasibility of Waste-to-Energy Options at the Truitier Waste Site.” August 2014. https://www.nrel.gov/docs/fy14osti/60585.pdf
CHF International. Haiti Emergency Solid Waste Collection, Landfill Rehabilitation and Jobs Creation Program (SWM). (Cooperative Agreement # 521-A-00-04-00028-00). Final Report (July 28 2004 – April 30, 2005. Silver Spring, MD: CHF International, August 15, 2005.
Samuel Booth, Kip Funk, Scott Haase, Haiti Waste-to-Energy Opportunity Analysis, November 2010.
Latin American Energy Organization, European Commission, Energy-Economic Information System, Energy Statistics, Version No. 14, Quito, July 2002.
Republic of Haiti, United Nations, World Bank, European Commission, Inter-American Development Bank, Interim Cooperation Framework 2004-2006, Summary Report, July 2004.
Pete Young and Bétonus Pierre, Haiti Energy Situation, April 1996.
Energy Strategic Management Assessment Program (ESMAP), Stratégie pour l’énergie domestique en Haiti, 1991.
Valorisation Énergétique des Déchets Opportunités et Défis (In French). Available online: http://www.europarl.europa.eu/RegData/etudes/BRIE/2015/554208/EPRS_BRI(2015)554208_FR.pdf
Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44.
Waste-to-Energy Plants in Europe in 2015. Available online: http://www.cewep.eu/2017/09/07/waste-to-energy-plants-in-europe-in-2015/
Deublein D, Steinhausser A, 2011. Biogas from Waste and Renewable Resources. 2nd Ed. WILEY-VCH Verlag GmbH & CO. KGaA
BREF, 2006. Reference Document on the Best Available Techniques for Waste Incineration
Kolb, T., Seifert, H., 2002. Thermal Waste Treatment: State of the art e a Summary. Waste Management 2002: The future of waste management in Europe. VDIGVC, Strasbourg, France (Düsseldorf, Germany)
A. Bosmans, I. Vanderreydt, D. Geysen, L. Helsen: The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review, 2013.
EMIS, 2010. Energie & milieu-informatiesysteem voor het Vlaams Gewest. http://www.emis.vito.be/
Bridgwater, A.V., 1994. Catalysis in thermal biomass conversion. Applied Catalysis A: General, 5 – 47
Helsen, L., 2000. Low-temperature Pyrolysis of CCA Treated Wood Waste. PhD thesis, Heverlee, KU Leuven
Zaman, A.U. Life cycle assessment of pyrolysis–gasification as an emerging municipal solid waste treatment technology. Int. J. Environ. Sci. Technol. 2013, 10, 1029–1038.
UBA, 2001. Draft of a German report with basic information’s for a BREF-Document. Waste Incineration.
Heberlein, J., Murphy, A.B., 2008. Thermal plasma waste treatment. Journal of Physics D: Applied Physics 41 (5), 053001.
Berger J, Fornés LV, Ott C, et al., 2005. Methane oxidation in a landfill cover with capillary barrier. Waste Manage 25: 369–373
Thompson AG, Wagner-Riddle C, Fleming R, 2004. Emissions of N2O and CH4 during the composting of liquid swine manure. Environ monit assess 91 (1–3): 87–104.
Guljajew N, Szapiro M, 1962. Determining of heat energy volume released by waste during biothermal disposal. Sbornik Naucznych Robot: 135–141
Irvine G, Lamont ER, Antizar-Ladislao B, 2010. Energy from waste: reuse of compost heat as a source of renewable energy. International Journal of Chemical Engineering 2010: 1–10.
Finnveden G, Moberg Å, Johansson J, et al., 2005. Life cycle assessment of energy from solid waste— part 2: landfilling compared to other treatment methods. J Clean Prod 13: 231–240.
Mata-Alvarez J, Mace S, Llabres P, 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource technol 74: 3–16
Finnveden G, Johansson J, Lind P, et al., 2005. Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13: 213–229.
Zhang R, El-Mashad HM, Karl Hartman, et al., 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technol 98: 929–935.
U.S. Environmental Protection Agency, 2011. An overview of Landfill Gas Energy in the United States, Landfill Methane Outreach Program (LMOP).
Lamb D, Venkatraman K, Bolan N, et al., 2012. An Alternative Technology for the Sustainable Management of Landfill Sites. Environ Sci Technol 44: 561–637.
U.S. Energy Information Administration, 2010. State Profile and Energy Estimates, New Jersey, available from: www.eia.gov/state/data.cfm?sid=NJ.
Tukker A. Product services for a resource-efficient and circular economy—A review. Journal of Cleaner Production. 2015; 97:76-91. DOI: 10.1016/j.jclepro.2013.11.049
Trindade A, Palacio J, González A, Rúa Orozco D, Lora E, Renó M, et al. Advanced exergy analysis and environmental assessment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Conversion and Management. 2018; 157:195-214. DOI: 10.1016/j.enconman.2017.11.083
Igoni A, Sepiribo I, Harry K. Modelling continuous anaerobic digestion of municipal solid waste in biogas production. Energy and Environmental Engineering. 2016; 4:30-43. DOI: 10.13189/eee.2016.040302
WEC—World Energy Council. World Energy Resources: Waste to Energy. London: World Energy Council; 2013. pp. 1-14. DOI: 10.1080/09297040802385400. Available from:https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_7b_Waste_to_Energy.pdf
Phyllis, 2011. The Composition of Biomass and Waste. Energy research Centre of the Netherlands (ECN). http://www.ecn.nl/phyllis
Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., Spooren, J., 2013. Characterization of landfilled materials: screening of the enhanced landfill mining potential. Journal of Cleaner Production 55, 72-83.
PricewaterhouseCoopers, 1998. The Facts: A European Cost–Benefit Perspective. Management Systems for Packaging Waste, November.
Tchobanoglous George, Thiesen Hilary, Vigil Samuel, Integrated Solid Waste Management, New York: McGraw-Hill Inc., 1993
Y. Vögeli, C. R. Lohri, A. Gallardo, S. Diener and C. Zurbrügg, “Anaerobic Digestion of Biowaste in Developing Countries,” EAWAG, Dübendorf, 2014.
EPA, “LFG Energy Projects, frequently asked questions. www3.epa.gov/lmop/faq/lfg.html visited August 2016”.