跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄧穎恩
Tang Wing Yan Joey
論文名稱: 分析在發射譜線亮度存在雙峰分佈的西佛二型星系的 宿主星系性質
Host Galaxy Properties of Bimodal Emission-line Luminosity Distributed Seyfert 2 Galaxy
指導教授: 黃崇源
Chorng-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 127
中文關鍵詞: 史隆數位巡天計劃阿帕奇點天文台近鄰星系測繪專案西佛⼆型星系雙峰分佈宿主星系形態宿主星系性質
外文關鍵詞: SDSS, MaNGA, Seyfert 2 galaxy, bimodal distribution, morphology, host galaxy properties
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論⽂的⽬的是利⽤MaNGA計劃去探討在西佛⼆型星系的宿主星系性質。透過分析
    SDSS的數據,我們已知西佛⼆型星系的[OIII]發射譜線出現了雙峰分佈。在第⼗三版Véron星系⽬錄和MaNGA的數據中,我們也發現同樣的雙峰分佈。我們利⽤星系凸核的絕對星等跟[OIII]的光度來分開兩類的西佛⼆型星系。我們利⽤了SDSS的FracDeV參數來表⽰星系凸核在整個星系的占有比例,並且使⽤星系動物園2以及⾁眼去分辨西佛⼆型星系的宿主星系形態。我們發現較低光度的西佛⼆型星系比起較⾼光度的西佛⼆型星系較常出現在早期型星系。我們把MaNGA的像素歸類為三種:星系核中⼼、環核區域,以及宿主星系區域。在環核區域,我們發現較⾼光度的西佛⼆型星系的⾊指數和巴⽿末減幅都較⾼。在宿主星系區域,我們發現較低光度的西佛⼆型星系的星族年齡、Dn4000指數、恆星質量的表⾯密度與⾦屬量都較⾼。我們也發現較⾼光度的西佛⼆型星系的恆星形成率和特定恆星形成率都比較低光度的為⾼,代表較⾼光度的西佛⼆型星系的宿主星系的恆星形成活躍度較⾼。此外,在宿主星系區域中,我們也發現恆星形成率與恆星質量都跟西佛⼆型星系的活躍星系核的強度有關。


    We investigate the host galaxy properties of Seyfert 2 galaxies using MaNGA data. We selected 23557 Seyfert 2 galaxies at redshift (z) < 0.2 from SDSS. A bimodal distribution of [OIII] is found which shows the power of our sample to be separated into low and high luminosity. For the selected Seyfert 2 galaxies in SDSS, we separate them based on a new separation scheme. We crossmatch our Seyfert 2 galaxies to MaNGA, which provides multiple spectroscopic data for 158 Seyfert 2 galaxies from our selected sample. The extended tail also occurs in high luminosity end in the MaNGA [OIII] distribution. Based on the new separation scheme, we have 104 low luminosity and 54 high luminosity Seyfert 2 galaxies.
    To classify the morphology of the host galaxies of these Seyfert 2 galaxies, we adopt the fitting parameter fracDeV and GalaxyZoo 2 (GZ2) obtained from SDSS and inspect the
    galaxy morphology by human eyes. The fracDeV results suggest an elliptical morphology for the low luminosity galaxies. We also inspect the galaxy morphology by human eyes. We find that the high luminosity Seyfert 2 galaxies are more likely to be late type galaxies. We also classify three groups of spaxel to study the host galaxy properties: the central
    spaxel, the circumnuclear 8 spaxels (surrounding the central spaxel), and host galaxy spaxels (those remaining spaxels). We find that the stellar age, Dn4000, stellar mass surface
    density, and metallicity are higher for the low luminosity Seyfert 2 in the host galaxy. The color excess and Balmer decrement (Ha/Hb) are higher for the high luminosity Seyfert 2 in the circumnuclear region. Both the star formation rate and specific star formation rate are higher for the high luminosity galaxies, suggesting that the star forming activity is stronger in the host galaxy of the high luminosity Seyfert 2. We also find that both the star formation rate and stellar mass in the host galaxy of the Seyfert 2 galaxies correlates with the power of the central AGNs.

    1 Introduction 1 1.1 Characteristics of Active Galactic Nucleus . . . . . . . . . . . . . . 1 1.2 Categories of AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Unified model of Seyfert galaxies . . . . . . . . . . . . . . . . . . . 3 1.4 Optical classification of Seyfert 2 galaxy . . . . . . . . . . . . . . . 3 1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Data and Sample Selection 5 2.1 Sloan Digital Sky Survey (SDSS) . . . . . . . . . . . . . . . . . . . 5 2.2 Mapping Nearby Galaxies at APO (MaNGA) galaxy survey . . . 6 2.3 Sample Selection in SDSS . . . . . . . . . . . . . . . . . . . . . . . 7 3 Data Analysis 9 3.1 SDSS Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Emission Line Flux and Luminosity . . . . . . . . . . . . . 9 3.1.2 Composite Model in SDSS Photometry fitting . . . . . . . 10 3.2 MaNGA Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Galaxy morphology . . . . . . . . . . . . . . . . . . . . . . 11 3.2.2 Properties Derived from MaNGA DAP Maps . . . . . . . . 11 3.2.3 Spaxel Classification . . . . . . . . . . . . . . . . . . . . . . 13 3.2.4 Properties Derived from the MaNGA FIREFLY Catalogue 13 4 Results 15 4.1 Bimodal Behaviour of Emission Line Luminosity Distribution . . 15 4.1.1 Seyfert 2 Galaxies in SDSS . . . . . . . . . . . . . . . . . . . 15 4.1.2 Seyfert 2 Galaxies in the Veron 13th Catalogue . . . . . . . 21 4.1.3 Seyfert 2 Galaxies in MaNGA . . . . . . . . . . . . . . . . . 23 4.2 Emission Line Separation Scheme . . . . . . . . . . . . . . . . . . . 25 4.3 Morphology Identification . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.1 FracDeV distribution . . . . . . . . . . . . . . . . . . . . . . 27 4.3.2 Galaxy Zoo 2 classification . . . . . . . . . . . . . . . . . . 29 4.3.3 Human eye Inspection . . . . . . . . . . . . . . . . . . . . . 31 4.4 BPT Diagram in MaNGA . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5 Host Galaxy Properties . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.5.1 Stellar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.5.2 Total Stellar Mass . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5.3 Stellar Mass Surface Density . . . . . . . . . . . . . . . . . 45 4.5.4 Dn4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5.5 Stellar age . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.6 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5.7 Colour excess E(B-V) . . . . . . . . . . . . . . . . . . . . . . 61 4.5.8 Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5.9 Star Formation Rate . . . . . . . . . . . . . . . . . . . . . . 69 4.5.10 Specific Star Formation Rate . . . . . . . . . . . . . . . . . . 73 5 Discussion 77 5.1 Sample selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Sample Selection in MaNGA . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Sample contamination issue . . . . . . . . . . . . . . . . . . . . . . 79 5.4 Host galaxy properties and morphology comparison . . . . . . . 82 5.5 [OIII] luminosity and host galaxy properties correlation . . . . . . 82 5.6 Comparison of different separation schemes . . . . . . . . . . . . 83 5.7 Hidden broad line Seyfert 2 . . . . . . . . . . . . . . . . . . . . . . 84 6 Summary 87

    [1] O. D. E., Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. University
    Science Books, 1989.
    [2] B. M. Peterson, An Introduction to Active Galactic Nuclei. Cambridge Univ.
    Press, 1997.
    [3] M.-H. Ulrich, L. Maraschi, and C. M. Urry, “Variability of active galactic
    nuclei,” Annual Review of Astronomy and Astrophysics, vol. 35, pp. 445–502,
    1 Sep. 1997.
    [4] D. J. Mortlock, S. J.Warren, B. P. Venemans, et al., “A luminous quasar at a
    redshift of z = 7.085,” Nature, vol. 474, pp. 616–619, 7353 Jun. 2011.
    [5] P. Padovani, D. M. Alexander, R. J. Assef, et al., “Active galactic nuclei:
    What’s in a name?” The Astronomy and Astrophysics Review, vol. 25, p. 2, 1
    Nov. 2017.
    [6] C. K. Seyfert, “Nuclear emission in spiral nebulae.,” The Astrophysical Journal,
    vol. 97, p. 28, Jan. 1943.
    [7] P. Padovani, “The faint radio sky: Radio astronomy becomes mainstream,”
    The Astronomy and Astrophysics Review, vol. 24, p. 13, 1 Dec. 2016.
    [8] A. Tchekhovskoy and O. Bromberg, “Three-dimensional relativistic MHD
    simulations of active galactic nuclei jets: Magnetic kink instability and
    Fanaroff-Riley dichotomy,” Monthly Notices of the Royal Astronomical Society:
    Letters, vol. 461, pp. L46–L50, 1 Sep. 2016.
    [9] P. Salucci, E. Szuszkiewicz, P. Monaco, and L. Danese, “Mass function of
    dormant black holes and the evolution of active galactic nuclei,” Monthly
    Notices of the Royal Astronomical Society, vol. 307, pp. 637–644, 3 Aug. 1999.
    [10] G. L. Granato, G. D. Zotti, L. Silva, A. Bressan, and L. Danese, “A physical
    model for the coevolution of QSOs and their spheroidal hosts,” The
    Astrophysical Journal, vol. 600, pp. 580–594, 2 Jan. 2004.
    [11] H. Netzer, “Revisiting the unified model of Active Galactic Nuclei,” Annual
    Review of Astronomy and Astrophysics, vol. 53, pp. 365–408, 1 Aug. 2015.
    [12] M. Elitzur and I. Shlosman, “The AGN-obscuring torus: The end of the
    "doughnut" paradigm?” The Astrophysical Journal, vol. 648, pp. L101–L104,
    2 Sep. 2006.
    [13] J. Brinchmann, S. Charlot, S. D. M. White, et al., “The physical properties
    of star-forming galaxies in the low-redshift universe,” Monthly Notices of
    the Royal Astronomical Society, vol. 351, pp. 1151–1179, 4 Jul. 2004.
    [14] E. Zackrisson, “Quasars and low surface brightness galaxies as probes of
    dark matter,” Uppsala University, May 2005.
    [15] W. Baade and R. Minkowski, “Identification of the radio sources in Cassiopeia,
    Cygnus A, and Puppis A.,” The Astrophysical Journal, vol. 119,
    p. 206, Jan. 1954.
    [16] M. Schmidt, “3C 273 : A star-like object with large red-shift,” Nature,
    vol. 197, pp. 1040–1040, 4872 Mar. 1963.
    [17] D. E. Osterbrock, “Seyfert galaxies with weak broad H alpha emission
    lines,” The Astrophysical Journal, vol. 249, p. 462, Oct. 1981.
    [18] E. M. Burbidge, “Quasi-stellar objects,” Annual Review of Astronomy and
    Astrophysics, vol. 5, pp. 399–452, 1 Sep. 1967.
    [19] T. M. Heckman, “An optical and radio survey of the nuclei of bright galaxies
    - activity in the normal galactic nuclei,” Astronomy and Astrophysics,
    vol. 87, pp. 152–164, Jul. 1980.
    [20] P. Giommi, P. Padovani, G. Polenta, S. Turriziani, V. D’Elia, and S. Piranomonte,
    “A simplified view of blazars: Clearing the fog around longstanding
    selection effects,” Monthly Notices of the Royal Astronomical Society,
    vol. 420, pp. 2899–2911, 4 Mar. 2012.
    [21] C. Tadhunter, “Radio AGN in the local universe: Unification, triggering
    and evolution,” The Astronomy and Astrophysics Review, vol. 24, p. 10, 1
    Dec. 2016.
    [22] R. Antonucci, “Unified models for active galactic nuclei and quasars,” Annual
    Review of Astronomy and Astrophysics, vol. 31, pp. 473–521, 1 Sep. 1993.
    [23] C. M. Urry and P. Padovani, “Unified schemes for radio-loud active galactic
    nuclei,” Publications of the Astronomical Society of the Pacific, vol. 107,
    p. 803, Sep. 1995.
    [24] E. Y. Khachikian and D. W. Weedman, “An atlas of Seyfert galaxies,” The
    Astrophysical Journal, vol. 192, p. 581, Sep. 1974.
    [25] S. Veilleux and D. E. Osterbrock, “Spectral classification of emission-line
    galaxies,” The Astrophysical Journal Supplement Series, vol. 63, p. 295, Feb.
    1987.
    [26] K. Davidson and H. Netzer, “The emission lines of quasars and similar
    objects,” Reviews of Modern Physics, vol. 51, pp. 715–766, 4 Oct. 1979.
    [27] M. Nenkova, Željko Ivezi´c, and M. Elitzur, “Dust emission from active
    galactic nuclei,” The Astrophysical Journal, vol. 570, pp. L9–L12, 1 May 2002.
    [28] A. Lawrence, “The relative frequency of broad-lined and narrow-lined active
    galactic nuclei: Implications for unified schemes,” Monthly Notices of
    the Royal Astronomical Society, vol. 252, pp. 586–592, 4 Oct. 1991.
    [29] D.W.Weedman, “Seyfert galaxies,” Annual Review of Astronomy and Astrophysics,
    vol. 15, pp. 69–95, 1 Sep. 1977.
    [30] M. Nenkova, M. M. Sirocky, R. Nikutta, Željko Ivezi´c, and M. Elitzur,
    “AGN dusty tori. ii. observational implications of clumpiness,” The Astrophysical
    Journal, vol. 685, pp. 160–180, 1 Sep. 2008.
    [31] R. R. J. Antonucci and J. S. Miller, “Spectropolarimetry and the nature of
    NGC 1068,” The Astrophysical Journal, vol. 297, p. 621, Oct. 1985.
    [32] J. A. Baldwin, M. M. Phillips, and R. Terlevich, “Classification parameters
    for the emission-line spectra of extragalactic objects,” Publications of the
    Astronomical Society of the Pacific, vol. 93, p. 5, Feb. 1981.
    [33] L. C. Ho, A. V. Filippenko, and W. L. W. Sargent, “A search for dwarf
    Seyfert nuclei. v. demographics of nuclear activity in nearby galaxies,” The
    Astrophysical Journal, vol. 487, pp. 568–578, 2 Oct. 1997.
    [34] L. J. Kewley, M. A. Dopita, R. S. Sutherland, C. A. Heisler, and J. Trevena,
    “Theoretical modeling of starburst galaxies,” The Astrophysical Journal,
    vol. 556, pp. 121–140, 1 Jul. 2001.
    [35] G. Kauffmann, T. M. Heckman, D. M. S. White, et al., “Stellar masses and
    star formation histories for 105 galaxies from the Sloan Digital Sky Survey,”
    Monthly Notices of the Royal Astronomical Society, vol. 341, pp. 33–53,
    1 May 2003.
    [36] T. M. Heckman and G. Kauffmann, “The host galaxies of AGN in the Sloan
    Digital Sky Survey,” New Astronomy Reviews, vol. 50, pp. 677–684, 9-10
    Nov. 2006.
    [37] T. M. Heckman and P. N. Best, “The coevolution of galaxies and supermassive
    black holes: Insights from surveys of the contemporary universe,”
    Annual Review of Astronomy and Astrophysics, vol. 52, pp. 589–660, 1 Aug.
    2014.
    [38] E. Emsellem, M. Cappellari, R. F. Peletier, et al., “The SAURON project
    – III. Integral-field absorption-line kinematics of 48 elliptical and lenticular
    galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 352,
    pp. 721–743, 3 Aug. 2004.
    [39] M. A. Bershady, M. A. W. Verheijen, R. A. Swaters, D. R. Andersen, K. B.
    Westfall, and T. Martinsson, “The DiskMass Survey. I. Overview,” The Astrophysical
    Journal, vol. 716, pp. 198–233, 1 Jun. 2010.
    [40] D. G. York, J. Adelman, J. E. A. Jr., et al., “The Sloan Digital Sky Survey:
    Technical summary,” The Astronomical Journal, vol. 120, pp. 1579–1587, 3
    Sep. 2000.
    [41] C. Stoughton, R. H. Lupton, M. Bernardi, et al., “Sloan Digital Sky Survey:
    Early data release,” The Astronomical Journal, vol. 123, pp. 485–548, 1 Jan.
    2002.
    [42] M. Fukugita, T. Ichikawa, J. E. Gunn, M. Doi, K. Shimasaku, and D. P.
    Schneider, “The Sloan Digital Sky Survey photometric system,” The Astronomical
    Journal, vol. 111, p. 1748, Apr. 1996.
    [43] J. E. Gunn, M. Carr, C. Rockosi, et al., “The Sloan Digital Sky Survey photometric
    camera,” The Astronomical Journal, vol. 116, pp. 3040–3081, 6 Dec.
    1998.
    [44] K. S. Dawson, D. J. Schlegel, C. P. Ahn, et al., “The baryon oscillation spectroscopic
    survey of SDSS-III,” The Astronomical Journal, vol. 145, p. 10, 1
    Jan. 2013.
    [45] S. A. Smee, J. E. Gunn, A. Uomoto, et al., “The multi-object, fiber-fed spectrographs
    for the Sloan Digital Sky Survey and the Baryon Oscillation
    Spectroscopic Survey,” The Astronomical Journal, vol. 146, p. 32, 2 Jul. 2013.
    [46] R. Ahumada, C. A. Prieto, A. Almeida, et al., “The 16th data release of the
    Sloan Digital Sky Survey: First release from the APOGEE-2 Southern Survey
    and full release of eBOSS spectra,” The Astrophysical Journal Supplement
    Series, vol. 249, p. 3, 1 Jul. 2020.
    [47] A. R. Thakar, A. Szalay, G. Fekete, and J. Gray, “The catalog archive server
    database management system,” Computing in Science Engineering, vol. 10,
    pp. 30–37, 1 Jan. 2008.
    [48] M. R. Blanton, J. Dalcanton, D. Eisenstein, et al., “The luminosity function
    of galaxies in SDSS commissioning data,” The Astronomical Journal,
    vol. 121, pp. 2358–2380, 5 May 2001.
    [49] C. A. Tremonti, T. M. Heckman, G. Kauffmann, et al., “The origin of the
    mass-metallicity relation: Insights from 53,000 star-forming galaxies in the
    Sloan Digital Sky Survey,” The Astrophysical Journal, vol. 613, pp. 898–913,
    2 Oct. 2004.
    [50] M. R. Blanton, M. A. Bershady, B. Abolfathi, et al., “Sloan Digital Sky Survey
    IV: Mapping the milky way, nearby galaxies, and the distant universe,”
    The Astronomical Journal, vol. 154, p. 28, 1 Jun. 2017.
    [51] K. Bundy, M. A. Bershady, D. R. Law, et al., “Overview of the SDSS-IV
    MaNGA survey: Mapping nearby galaxies at apache point observatory,”
    The Astrophysical Journal, vol. 798, p. 7, 1 Dec. 2014.
    [52] D. R. Law, R. Yan, M. A. Bershady, et al., “Observing strategy for the SDSSIV/
    MaNGA IFU galaxy survey,” The Astronomical Journal, vol. 150, p. 19,
    1 Jun. 2015.
    [53] F. Belfiore, R. Maiolino, C. Maraston, et al., “SDSS IV MaNGA – spatially
    resolved diagnostic diagrams: A proof that many galaxies are LIERs,”
    Monthly Notices of the Royal Astronomical Society, vol. 461, pp. 3111–3134,
    3 Sep. 2016.
    [54] J. E. Gunn, W. A. Siegmund, E. J. Mannery, et al., “The 2.5 m telescope of
    the Sloan Digital Sky Survey,” The Astronomical Journal, vol. 131, pp. 2332–
    2359, 4 Apr. 2006.
    [55] R. Yan, C. Tremonti, M. A. Bershady, et al., “SDSS-IV/MaNGA: Spectrophotometric
    calibration technique,” The Astronomical Journal, vol. 151,
    p. 8, 1 Dec. 2015.
    [56] N. Drory, N. MacDonald, M. A. Bershady, et al., “The MaNGA integral
    field unit fiber feed system for the sloan 2.5 m telescope,” The Astronomical
    Journal, vol. 149, p. 77, 2 Jan. 2015.
    [57] K. B. Westfall, M. Cappellari, M. A. Bershady, et al., “The data analysis
    pipeline for the SDSS-IV MaNGA IFU galaxy survey: Overview,” The Astronomical
    Journal, vol. 158, p. 231, 6 Nov. 2019.
    [58] D. R. Law, B. Cherinka, R. Yan, et al., “The data reduction pipeline for the
    SDSS-IV MaNGA IFU galaxy survey,” The Astronomical Journal, vol. 152,
    p. 83, 4 Sep. 2016.
    [59] M. Cappellari, “Improving the full spectrum fitting method: Accurate convolution
    with Gauss–Hermite functions,” Monthly Notices of the Royal Astronomical
    Society, vol. 466, pp. 798–811, 1 Apr. 2017.
    [60] D. Goddard, D. Thomas, C. Maraston, et al., “SDSS-IV MaNGA: Spatially
    resolved star formation histories in galaxies as a function of galaxy mass
    and type,” Monthly Notices of the Royal Astronomical Society, stw3371, Dec.
    2016.
    [61] B. Cherinka, B. H. Andrews, J. Sánchez-Gallego, et al., “Marvin: A tool kit
    for streamlined access and visualization of the SDSS-IV MaNGA data set,”
    The Astronomical Journal, vol. 158, p. 74, 2 Jul. 2019.
    [62] L. J. Kewley, B. Groves, G. Kauffmann, and T. Heckman, “The host galaxies
    and classification of active galactic nuclei,” Monthly Notices of the Royal
    Astronomical Society, vol. 372, pp. 961–976, 3 2006.
    [63] S. F. Sanchez, V. Avila-Reese, H. Hernandez-Toledo, et al., “SDSS IV
    - MaNGA properties of AGN host galaxies,” Rev.Mex.Astron.Astrofis,
    vol. 54, p. 217, 2018.
    [64] K. W. Willett, C. J. Lintott, S. P. Bamford, et al., “Galaxy Zoo 2: Detailed
    morphological classifications for 304122 galaxies from the Sloan Digital
    Sky Survey,” Monthly Notices of the Royal Astronomical Society, vol. 435,
    pp. 2835–2860, 4 Nov. 2013.
    [65] R. E. Hart, S. P. Bamford, K. W. Willett, et al., “Galaxy Zoo: Comparing
    the demographics of spiral arm number and a new method for correcting
    redshift bias,” Monthly Notices of the Royal Astronomical Society, vol. 461,
    pp. 3663–3682, 4 Oct. 2016.
    [66] S. L. Odell, “The optical continuum emission of active galactic nuclei,”
    Publications of the Astronomical Society of the Pacific, vol. 98, p. 140, Feb. 1986.
    [67] B. A. G., “Spectral evolution of galaxies. i - early-type systems,” The Astrophysical
    Journal, vol. 273, p. 105, Oct. 1983.
    [68] M. L. Balogh, S. L. Morris, H. K. C. Yee, R. G. Carlberg, and E. Ellingson,
    “Differential galaxy evolution in cluster and field galaxies at z 0.3,” The
    Astrophysical Journal, vol. 527, pp. 54–79, 1 Dec. 1999.
    [69] F. Belfiore, K. B.Westfall, A. Schaefer, et al., “The data analysis pipeline for
    the SDSS-IV MaNGA IFU galaxy survey: Emission-line modeling,” The
    Astronomical Journal, vol. 158, p. 160, 4 Sep. 2019.
    [70] R. C. Kennicutt, “Star formation in galaxies along the Hubble sequence,”
    Annual Review of Astronomy and Astrophysics, vol. 36, pp. 189–231, 1 Sep.
    1998.
    [71] J. Neumann, D. Thomas, C. Maraston, et al., “The MaNGA FIREFLY valueadded-
    catalogue: Resolved stellar populations of 10,010 nearby galaxies,”
    Monthly Notices of the Royal Astronomical Society, May 2022.
    [72] Y.-C. Chen and C.-Y. Hwang, “Emission line luminosity distributions
    of Seyfert 2 galaxies,” Monthly Notices of the Royal Astronomical Society,
    vol. 485, pp. 3402–3408, 3 May 2019.
    [73] M.-P. Véron-Cetty and P. Véron, “A catalogue of quasars and active nuclei:
    13th edition,” Astronomy and Astrophysics, vol. 518, A10, Jul. 2010.
    [74] T. F. Adams, “A survey of the Seyfert galaxies based on large-scale imagetube
    plates,” The Astrophysical Journal Supplement Series, vol. 33, p. 19, Jan.
    1977.
    [75] T. M. Heckman, “Peculiar nuclei and their relation to galaxy type,” Publications
    of the Astronomical Society of the Pacific, vol. 90, p. 241, Jun. 1978.
    [76] H. Miraghaei, “The effect of environment on AGN activity: The properties
    of radio and optical AGN in void, isolated, and group galaxies,” The
    Astronomical Journal, vol. 160, p. 227, 5 Nov. 2020.
    [77] G. Kauffmann, T. M. Heckman, D. M. S. White, et al., “Stellar masses and
    star formation histories for 105 galaxies from the Sloan Digital Sky Survey,”
    Monthly Notices of the Royal Astronomical Society, vol. 341, pp. 33–53,
    1 May 2003.
    [78] L. Binette, A. C. Raga, N. Calvet, and J. Canto, “Balmer decrements in
    Seyfert 2 galaxies,” Publications of the Astronomical Society of the Pacific,
    vol. 102, p. 723, Jul. 1990.
    [79] A. Stemo, J. M. Comerford, R. S. Barrows, D. Stern, R. J. Assef, and R. L.
    Griffith, “A catalog of AGN host galaxies observed with HST/ACS: Correlations
    between star formation and AGN activity,” The Astrophysical Journal,
    vol. 888, p. 78, 2 Jan. 2020.
    [80] H. D. Tran, “The unified model and evolution of active galaxies: Implications
    from a spectropolarimetric study,” The Astrophysical Journal, vol. 583,
    pp. 632–648, 2 Feb. 2003.
    [81] Y.-Z. Wu, E.-P. Zhang, Y.-C. Liang, C.-M. Zhang, and Y.-H. Zhao, “The
    different nature of Seyfert 2 galaxies with and without hidden broad-line
    regions,” The Astrophysical Journal, vol. 730, p. 121, 2 Apr. 2011.

    QR CODE
    :::