跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李冠舜
Guan-Shun Li
論文名稱: 應用於生醫系統具低雜訊且低供應電壓的 帶差參考電路與RC時間常數校正機制之 低功率連續時間三角積分類比數位轉換器
A Low-Power Continuous-Time Delta-Sigma ADC with Low Noise Low Voltage Supply Bandgap Reference Voltage and RC Time-Constant Calibration Technique for Biomedical Systems
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 140
中文關鍵詞: 三角積分類比數位調變器電流重複使用帶差參考電路
外文關鍵詞: delta-sigma modulator, current reusing, bandgap reference voltage
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人們平均壽命逐漸提升,行動不便的老年人為了確保身體健康無虞,各種穿戴式生醫電子醫療儀器如雨後春筍般崛起,故本論文將以如何降低功耗與面積為訴求,來達到方便攜帶與電池續航更加長效之目的。
    本論文由三部分所組成,第一部分為設計一個應於生醫訊號之連續時間(CT)三角積分類比數位調變器,相較於離散時間(DT)系統,可減緩硬體需求。並以一個運算放大器達到兩階積分效果,同時導入電流重複使用技術(Current-Reusing),可以抑制其閃爍雜訊、熱雜訊以及功率消耗。
    第二部分為設計一個低雜訊且低供應電壓的帶差參考電路,其產生之與溫度變異無關的穩定偏壓可供三角積分調變器當作回授偏壓以及其他各子電路使用。
    在第三部分,由於CTDSM存在與溫度、製程變異嚴重的缺點,因此本論文加入RC時間常數校正機制,偵測並補償RC變異,確保調變器正常運作。最後再加入一個數位降頻濾波器,並整合成一個完整的連續三角積分類比數位轉換器。
    本論文的電路設計均使用UMC 0.18 μm CMOS 1P6M製程。為了追求低功耗,因此將所有電路的供應電壓設定為1.2 V。第一部份的CTDSM設計在10 kHz頻寬、128倍超取樣率、0.3 V的輸入振幅,量測到的訊號雜訊失真比(SNDR)為78.42 dB,有效位元(ENOB)為12.73位元,功率消耗約為15.97μW,其晶片面積 (包含PAD & Seal-Ring)為0.67mm*0.56mm。第二部分的帶差參考電路輸出為0.6 V的穩定偏壓(可調式),其模擬頻寬內之輸出總雜訊量為0.496 nV^2/(0.1~10 kHz),功率消耗為17.3 μW。最後完整的CT Delta-Sigma ADC ,其模擬可達到的訊號雜訊失真比(SNDR)為80.31 dB,有效位元(ENOB)為13.05位元,功率消耗約為71.82 μW(調變器+帶差參考電路+RC時間常數校正電路+Buffer),整體晶片佈局面積(包含PAD & Seal-Ring)為1.74mm*1.11mm。


    With the increment of average age of people, various bio-medical wearable devices have been launched, especially for the elders. Therefore, how to reduce the power consumption and area to achieve the portability as well as the long battery life-time requirements are demands of this thesis.

    This thesis consists of three parts, the first part designs a continuous-time delta-sigma modulator (CTDSM) for bio-medical application to ease the requirements of hardware rather than discrete-time DSM using an OPA to achieve the second-order integration. Besides, the current-reusing technique is used to maintain flicker noise and thermal noise to lower level and to keep low power consumption.

    In the second part, a bandgap voltage reference (BGR) is introduced to meet low-noise and low supply voltage requirements. It can provide a stale voltage reference without the variation of temperature for feedback reference of DSM and other sub-circuits.

    Third, the drawback of a CTDSM is the dependence on the variation of environment temperature and process. Therefore, the RC Time-Constant Calibration method is proposed for detecting and compensating the variation of RC time-constant. Finally, by introducing a decimation, we integrate all sub-circuits to a complete continuous-time delta-sigma ADC.

    Designs in this thesis are fabricated in the UMC 0.18 μm 1P6M CMOS process. In order to pursue low-power consumption, the supply voltage is all set up as low as 1.2 V. First, the measurement of CTDSM achieves 78.42 dB SNDR, 12.73 bits ENOB, and power consumption 15.97 μW at 10 kHz signal bandwidth with X128 OSR, 0.6 Vp-p amplitude and chip area is 0.67mm*0.56mm, including PAD and seal-ring. Second, BGR generates a stable 0.6 V voltage reference which is tunable with flicker and thermal noise 0.496nV^2/(0.1~10 kHz) in the bandwidth for 17.3 μW. Finally, the simulation of the complete CT delta-sigma ADC achieves 81.31 dB SNDR, 13.21 bits ENOB, and power consumption 71.82 μW, including CTDSM, BGR, RC Time-Constant Calibration and buffers. The whole chip area is 1.74mm*1.11mm, including PAD and seal-ring.

    摘要 i Abstract iii 致謝 v 目錄 vii 圖目錄 xi 表目錄 xvii 第一章 緒論 1 1.1 背景 1 1.2 研究動機 1 1.3 論文架構 3 第二章 三角積分類比數位轉換器介紹 4 2.1 原理介紹 4 2.2 連續-離散時間之等效轉換 (CT-to-DT Conversion) 5 2.2.1 脈衝響應不變等效轉換(Impulse-Invariant Transform) 7 2.2.2 回授DAC之行為函數 8 2.3 轉移函數 (Transfer Function) 10 2.3.1 雜訊轉移函數 (Noise-Transfer Function, NTF) 11 2.3.2 訊號轉移函數 (Signal-Transfer Function, STF) 13 第三章 系統模擬驗證與非理想因素考量 14 3.1 三角積分調變器架構選擇與建立 14 3.1.1 三角積分調變器之階數與超取樣率(OSR)的選擇 14 3.1.2 量化器的選擇 17 3.1.3 三角積分調變器架構的選擇 20 3.1.4 將DT的係數轉換至CT的系統上 22 3.2 Simulink模型建立與模擬 23 3.2.1 Simulink 理想模型建立 23 3.2.2 Simulink 非理想模型建立 26 第四章 連續時間三角積分調變器電路設計與模擬 50 4.1 系統電路 50 4.2 運算放大器 51 4.2.1 具電流重複利用之兩級全差動放大器 52 4.2.2 共模回授電路(Common-Mode Feedback, CMFB) 58 4.2.3 運算放大器之模擬結果 60 4.3 量化器與一位元NRZ DAC 62 4.4 系統模擬 64 第五章 CTDSM之晶片佈局與量測 68 5.1 晶片佈局 68 5.2 量測考量 69 5.3 量測結果 72 5.4 文獻比較 74 第六章 帶差參考電路介紹 75 6.1 基本原理 75 6.1.1 負TC係數 75 6.1.2 正TC係數 76 6.1.3 正負溫度係數相消(TC值=0) 77 6.2 架構探討 77 6.2.1 BGR一般架構 77 6.2.2 適用於低供應電壓之架構 78 6.3 本論文使用之架構 81 第七章 低雜訊且低供應電壓之帶差參考電路設計 83 7.1 系統電路 83 7.2 BGR Core 84 7.3 運算放大器與常數Gm偏壓(Constant-Gm Biasing) 85 7.4 啟動電路(Start-Up Circuit) 87 7.5 系統模擬 89 7.5.1 直流分析 90 7.5.2 交流分析 92 7.5.3 暫態分析 93 7.5.4 雜訊分析 94 7.6 晶片佈局 96 7.7 文獻比較 97 第八章 連續時間三角積分類比數位轉換器之整合 98 8.1 RC時間常數校正電路(RC Time-Constant Calibration) 98 8.2 數位降頻濾波器(Decimation Filter) 104 8.3 系統整合 105 第九章 總結與未來展望 107 9.1 總結 107 9.2 未來展望 107 參考文獻 108

    [1] J. G. Webster, “Medical Instrumentation Application and Design,” Canada: John
    Wiley & Sons., 1998.
    [2] D. A. Johns and K. Martin, “Analog CMOS integrated Circuit Design”, John Wiley & Sons, Inc., 1997.
    [3] 楊仁傑 , “適用於生理訊號檢測之低功耗連續時間三角積分調變器”, 國立中央
    大學電機工程學系碩士論文, 民國105 年.
    [4] 凃建宇 , “應用於偵測生醫訊號的可調增益低雜訊放大器暨逐漸趨近式類比數位
    轉換器之低耗能類比前端設計”, 國立中央大學電機工程學系碩士論文, 民國105
    年.
    [5] 黃昶暘 , “應用於生醫訊號具RC 時間常數校正機制之低功率連續時間三角積分
    類比數位轉換器”, 國立中央大學電機工程學系碩士論文, 民國103 年.
    [6] M. Ortmanns, F. Gerfers, “Continuous-Time Sigma-Delta A/D Conversion”,
    Fundamentals, Performance Limits and Robust Implementations
    [7] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural
    recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun.
    2003.
    [8] http://www.ece.utah.edu/~harrison/ece5720/Subthreshold.pdf
    [9] J. Roh, S. Byun, Y. Choi, H. Roh, Y. G. Kim, J. K. Kwon, “A 0.9-V 60-W 1-Bit
    Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range”, IEEE Journal of
    Solid-State Circuits, Vol. 43, No. 2, February 2008.
    [10] C. H. Kuo, D. Y. Shi, K. S. Chang, “A Low-Voltage Fourth-Order Cascade Delta–
    Sigma Modulator in 0.18-m CMOS”, IEEE Transactions on Circuits And Systems—
    I: Regular Papers, Vol. 57, No. 9, September 2010.
    [11] Guo-Ming Sung, Chih-Ping Yu, Tsai-Wang Hung, Hsiang-Yuan Hsieh, “Mixed-Mode
    Chip Implementation of Digital Space SVPWM With Simplified-CPU and 12-Bit 2.56
    Ms/s Switched-Current Delta-Sigma ADC in Motor Drive”, IEEE TRANSACTIONS
    ON POWER ELECTRONICS, VOL. 27, NO. 2, FEBRUARY 2012.
    [12] J. Garcia, S. Rodriguez, A. Rusu, “A Low-Power CT Incremental 3rd Order ADC for
    Biosensor Applications”, IEEE Transactions on Circuits And Systems—I: Regular
    Papers, Vol. 60, No. 1, January 2013.
    [13] Younghyun Yoon, Quanzhen Duan, Jaejin Yeo, Jeongjin Roh, Jongjin Kim, Dongwook
    Kim, “A Delta–Sigma Modulator for Low-Power Analog Front Ends in Biomedical
    Instrumentation”,IEEE TRANSACTIONS ON INSTRUMENTATION AND
    MEASUREMENT, 2016.
    [14] Yoon Hwee Leow, Howard Tang, Zhuo Chao Sun, Liter Siek, “A 1 V 103 dB 3rd-Order
    Audio Continuous-Time ADC With Enhanced Noise Shaping in 65 nm CMOS”, IEEE
    Journal of Solid-State Circuits, Vol. 51, No. 11, November 2016.
    [15] Behzad Razavi, “類比CMOS積體電路設計”修訂版
    [16] Muhammad M. El Kholy, “Low Noise Low Voltage Sub Bandgap Reference Voltage
    with PTAT Current Generator”, IEEE Conference, 2009.
    [17] 林弘益, “應用於生醫訊號之低功率數位降頻濾波器”, 國立中央大學電機工程學
    系碩士論文, 民國101 年.
    [18] Ka Nang Leung et al, “A Sub-1-V 15-ppm/ C CMOS Bandgap Voltage Reference
    without Requiring Low Threshold Voltage Device”, IEEE J. Solid-State Circuits, vol. 37, No4, pp. 526–530, Jan 2002.
    [19] Andrea Boni , “Op-Amps and Startup Circuits for CMOS Bandgap References With
    Near 1-V Supply”, IEEE J. Solid-State Circuits, vol. 37, No10, pp. 1339–1343, Oct 2002.
    [20] J. Doyle, Young J. Lee et al., “A CMOS Subbandgap Reference Circuit With 1-V
    Power Supply Voltage”, IEEE J. Solid-State Circuits, vol. 39, pp. 252–255, Jan 2004.
    [21] R. T. Perry et al, “A 1.4 V Supply CMOS Fractional Bandgap Reference”, IEEE J.
    Solid-State Circuits, vol. 42, No10, pp. 2180–2, Oct 2007.

    QR CODE
    :::