| 研究生: |
林冠廷 Kuan-Ting Lin |
|---|---|
| 論文名稱: |
對於右設限存活模型預測精準度的估計 Estimation for Right-Censored Survival Model based Predictive Accuracy |
| 指導教授: |
曾議寬
Yi-Kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 加速失敗模型 、比例風險模型 、聯合模型 、預測精準度 、時間 相依接受者作業特徵曲線下面積 |
| 外文關鍵詞: | AFT model, Cox model, joint model, prediction accuracy, time-dependent AUC |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,主要透過先前研究所發展出的一種預測精準度指標concordance來作為衡量疾病預測能力的標準,它是藉由研究中提出應用在固定共變數下的時間相依敏感度與特異度所導出並使用Cox模型描述共變數與存活時間的關係。然而使用Cox模型需要資料符合比例風險假設,若不符合假設我們可以利用其他模型像是加速失敗(AFT)模型來替代。接著,本研究更進一步將其推廣到具有長期追蹤的生物指標上。我們藉由後續的模擬章節來評估本篇論文所推廣的程式其結果表現,以及根據三筆實際的資料來展示出推廣後的成果。
In this thesis, we used a concordance index as a measure of disease prediction ability which was derived from time-dependent sensitivity and specificity with fixed covariates. In addition, the concordance was utilized the Cox proportional hazards model to describe the relationship between covariates and survival time via previous studies. Since proportional hazard assumption may fail in some cases, we may replace the Cox model by alternative model such as the accelerated failure time (AFT) model. Moreover, we further extended the procedures to data with longitudinal biomarkers. We evaluated the performance of the extended methodology via simulations and demonstrated the usefulness of our procedures through three real data.
張雅玟(2015)。三種時間相依的接受者作業特徵曲線下面積估計方法比較與修正。國立中央大學統計研究所碩士論文。
Bamber, D. (1975). “The area above ordinal dominance graph and the area below the
receiver operating characteristic graph.” Journal of Mathematical Psychology 12, 387-
415.
Cai, T., Pepe, M. S., Lumley, T., Zheng, Y., and Jenny, N. S. (2006). “The sensitivity
and specificity of markers for event times.” University of Washington Technical Report
188, 1-30.
Chiou, S. H., Kang, S., Yan, J. (2014). “Fitting accelerated failure time models in routine
survival analysis with R package aftgee.” Journal of Statistical Software 61(11), 1-23.
Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). “Incorporating
the time dimension in receiver operating characteristic curves: A case study of prostate
cancer.” Medical Decision Making 19, 242-251.
Heagerty, P. J., Saha-Chaudhuri, P. and Saha-Chaudhuri, M. P. (2013). “Package
‘survivalROC’: Time-dependent ROC curve estimation from censored survival data.”
Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). “Time-dependent ROC curves for
censored survival data and a diagnostic marker.” Biometrics 56, 337-344.
Heagerty, P. J. and Zheng, Y. (2005). “Survival model predictive accuracy and ROC
curves.” Biometrics 61, 92-105.
Heagerty, P. J., Saha-Chaudhuri, P. and Saha-Chaudhuri, M. P. (2012). “Package
‘risksetROC’: riskset ROC curve estimation from censored survival data.”
Ichida, J. M., Wassell, J. T., Keller, M. D., and Ayers, L. W. (1993). “Evaluation of
protocol change in burn‐care management using the Cox proportional hazards model
with time‐dependent covariates.” Statistics in Medicine 12(3‐4), 301-310.
Kardaun, O. (1983). “Statistical survival analysis of male larynx‐cancer patients‐a case
study.” Statistica neerlandica 37(3), 103-125.
Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). “Time-dependent ROC
curve analysis in medical research: current methods and applications.” BMC Medical
Research Methodology 17-53.
Klein, J. P., and Moeschberger, M. L. (2006). “Survival analysis: techniques for censored
and truncated data.” Springer Science & Business Media
Lin, D. Y. & Ying, Z. (1995). “Semiparametric inference for the accelerated life model
with time-dependent covariates.” Journal of statistical planning and inference 44, 47-63.
López-de-Ullibarri, I., & Jácome, M. A. (2013). “survPresmooth: an R package for
presmoothed estimation in survival analysis.” American Statistical Association
O’Quigley, J. and Xu, R. (2000). “Proportional hazards estimate of the conditional
survival function.” Journal of the Royal Statistical Society, Series B, Methodological
62, 667-680.
Potapov, S., Adler, W. and Schmid, M. (2011). “survAUC: estimators of prediction
accuracy for time-to-event data.”
Royston, P., and Altman, D. G. (1994). “Regression using fractional polynomials of continuous
covariates: parsimonious parametric modelling.” Journal of the Royal Statistical
Society: Series C (Applied Statistics) 43(3), 429-453.
Saha-Chaudhuri, P., and Heagerty, P. J. (2012). “Non-parametric estimation of a timedependent
predictive accuracy curve.” Biostatistics 14(1), 42-59.
Slate, E. H. and Turnbull, B. W. (2000). “Statistical models for longitudinal biomarkers
of disease onset.” Statistics in Medicine 19, 617-637.
Song, X., Davidian, M. and Tsiatis, A. A. (2002). “A semiparametric likelihood approach
to joint modelling of longitudinal and time-to-event data.” Biometrics 58, 742-753.
Tseng, Y. K., Wang, J. L. and Hsieh, F. (2005). “Joint modeling of accelerated failure
time and longitudinal data.” Biometrika 92, 587-603.
Tseng, Y. K., Wang, J. L., SU, Y. R. and Mao, M. (2015). “An extended hazard model
with longitudinal covariates.” Biometrika 102, 135-150.
Tsiatis, A. A. and Davidian, M. (2001). “A semiparametric estimator for the proportional
hazards model with longitudinal covariates measured with error.” Biometrika 88, 447-
458.
Wang, Y. and Taylor, J. M. G. (2001). “Jointly modeling longitudinal and event time data
with application to acquired immunodeficiency syndrome.” Journal of the American
Statistical Association 96, 895-905.
Wulfsohn, M. S. and Tsiatis, A. A. (1997). “A joint model for survival and longitudinal
data measured with error.” Biometrics 53, 330-339.
Zeng, D. and Lin, D. Y. (2007). “Efficient Estimation for the Accelerated Failure Time
Model.” Journal of the American Statistical Association 102(480), 1387-1396.