跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張致維
Chih-wei Chang
論文名稱: 超音波振動補助等通彎角擠製之有限元素分析
指導教授: 葉維磬
Wei-ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 超音波等通彎角擠製FEM
外文關鍵詞: Ultrasonic, ECAE, 有限元素分析
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 等通彎角擠製為一種有效及常見之方法使得材料產生大量塑性變形,進而使得晶粒細化以達到強化材料機械性質,因此本文使用商業有限元素軟體DEFORM-3D,分析超音波輔助等通彎角擠製加工鋁1070問題,本文首先根據實驗之結果,驗證有限元素軟體DEFORM-3D對於等通彎角加工分析之適妥性,接著利用沖頭附加軸向超音波振動輔助等通彎角擠製,探討不同振幅,不同外圓弧角度(Ψ)對沖頭負載與擠製料片之應變分布。其結果顯示,超音波對於降低沖頭負載以及應變分布均勻性皆具有良好效應,並且透過增加振幅可以提高其效應。


    Equal-channel angular extrusion is a prominent and effective method for achieving ultra-fine grain (UFG) structured among the various severe plastic deformation (SPD) techniques. The effect of ultrasonic vibration on aluminum 1070 alloy in the ECAE process is analyzed using DEFORM-3D software by finite element methods (FEMs). Firstly the result of experiment is applied to improve the accuracy of DEFORM-3D software in ECAE process. The effect of different ultrasonic amplitudes and outer corner angles (Ψ) on the punch load and strain inhomogeneity is discussed . The result reveals that ultrasonic vibration can decrease the punch load and improve the strain inhomogeneity by increasing the ultrasonic amplitude

    目錄 摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vi 符號索引 ix 第一章 緒論..................................................1 1-1 前言..................................................1 1-2 文獻回顧..............................................2 1-3 研究動機與目的........................................8 第二章 基本理論.............................................12 2-1 Update Lagrangian Formulation (ULF)理論..................12 2-2有限元分析基本概念...................................13 2-3超音波加工基本理論...................................18 2-4等通彎角基本理論.....................................20 2-5 DEFORM求解超音波等通彎角擠製之設定與操作程序.......24 第三章 DEFORM有限元素介紹.............................28 3-1基本假設.............................................28 3-2 DEFORM之架構與各部份功能之介紹....................29 3-3 DEFORM的設定與操作程序.............................31 3-3-1前處理器(Pre-processor)..........................31 3-3-2後處理器(Post-processor).........................33 第四章 結果與討論...........................................34 4-1實驗驗證.............................................34 4-1-1 有限元素模型之沖頭負載驗證......................36 4-1-2 有限元素模型之應變分布驗證......................36 4-1-3 超音波全程加載與部分區段加載之應變分布分析......37 4-2軸向超音波振動輔助等通彎角擠製(ECAE)之分析............38 4-3軸向超音波振動對等通彎角擠製之效應...................38 4-3-1軸向超音波振動對沖頭負載之效應...................39 4-3-2軸向超音波振動對應變分部之效應...................40 4-4 外圓弧角度(Ψ)改變對軸向超音波輔助等通彎角擠製(ECAE)之效應.................................................42 4-4-1 外圓弧角度(Ψ)改變對軸向超音波輔助等通彎角擠製(ECAE)之沖頭負載效應...................................43 4-4-2外圓弧角度(Ψ)改變對軸向超音波輔助等通彎角擠製(ECAE)之應變分部效應...................................44 第五章 結論與建議..........................................46 5-1 結論.................................................46 5-2 建議.................................................47 參考文獻.......................................................48 附錄...........................................................79

    [1] Prangnell P.B. Harris C. Roberts S.M. “Finite element modeling of equal channel angular extrusion,”Scripta Mater. 37(7):983–9.1997
    [2] Joun M.S., Moon H.G., Choi I.S., Lee M.C., Jun B.Y., “Effect of friction laws on metal forming processes,” Tribology International
    . 42:311–9.2009.
    [3] Rosochowski A. and Olejnik L., “Numerical and physical modeling of plastic deformation in 2-turn equal channel angular extrusion,” Journal of Materials Processing Technology., 125-126: 309-316.2002.
    [4] Ma, A., N. Yoshinori, S. Kazutaka, S. Ichinori and S. Naobumi , “Characteristics of plastic deformation by rotary-die equal channel angular pressing,” Scripta Materialia, 52: 433-437.2005.
    [5] Pasierb, A. and Wojnar, A., “An experimental investigation of deep drawing and drawing processes of thin walled products with utilization of ultrasonic vibrations,” Journal of Materials Processing Technology, Vol. 34, pp. 489-494, 1992.
    [6] Tsujina, J., Ueoka, T., Sato, H., Takiguchi, K. and Takahashi, K., “Characteristics of ultrasonic bending of metal plates using a longitudinal vibration die and punch,” IEEE Ultrasonic Symposium, pp.863-866,
    1992.
    [7] Siegert, K. and Mock, A., “Wire drawing with ultrasonically oscillating dies,” Journal of Materials Processing Technology, Vol. 60 , pp. 657-660, 1996.
    [8] Petruzelka, J., Sarmanova, J. and Sarman, A., “The effect of ultrasound on tube drawing,” Journal of Materials Processing Technology, Vol. 60, pp. 661-668, 1996.
    [9] Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., Ito, K. and Hatano, H., “An application of ultrasonic vibration to the deep drawing process,” Journal of Materials Processing Technology, Vol. 80-81, pp. 406-412, 1998.
    [10] Siegert, K., “Influencing the friction in metal forming processes by superimposing ultrasonic waves,” CIRP Annals-Manufacturing Technology, Vol. 50, pp. 195-200, 2001.
    [11] Murakawa, M. and Jin, M., “The utility of radially and ultrasonically vibrated dies in the wire drawing process,” Journal of Materials Processing Technology, Vol. 113, pp. 81-86, 2001.
    [12] Hayashi, M., Jin, M., Thipprakmas, S., Murakawa, M., Hung, J.C., Tsai, Y.C. and Hung, C.H., “Simulation of ultrasonic-vibration drawing using the finite element (FEM),” Journal of Materials Processing Technology, Vol. 140, pp. 30-35, 2003.
    [13] Kumar, V.C. and Hutchings, I.M., “Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration,” Tribology International, Vol. 37, pp. 833-840, 2004.
    [14] Hung , J.C. and Hung, C.H., “The influence of ultrasonic-vibration on hot upsetting of aluminum alloy,” Ultrasonics, Vol. 43, pp. 692-698, 2005.
    [15] Suh, C.M., Song, G.H., Suh, M.S., Pyoun, Y.S., “Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology,” Materials Science and Engineering : A, Vol. 443, pp. 101-106, 2007.
    [16] Ashida, Y. and Aoyama, H., “Press forming using ultrasonic vibration,” Journal of Materials Processing Technology, Vol. 187-188, pp. 118-122, 2007.
    [17] Wang Ting, Wang Dongpo, Liu Gang, Gong Baoming, Song Ningxia, “Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing,” Applied Surface Science, Vol. 255, pp. 1824-1829, 2008.
    [18] Yanxiong Liu, Sergey Suslov, Qingyou Han, Clause Xu, Lin Hua, “Microstructure of the pure copper produced by upsetting with ultrasonic vibration,” Materials Letters, Vol. 67, pp. 52-55, 2012.
    [19] A. Rosochowski, L. Olejnik, “Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion,” Journal of Materials Processing Technology, Vol. 125–126, pp. 309-316,2012.
    [20] W.J. Kim, J.C. Namgung, J.K. Kim, “Analysis of strain uniformity during multi-pressing in equalb channel angular extrusion,” Scripta Materialia, Vol. 53, pp. 293-298, 2005.
    [21] Shubo Xu, Guoqun Zhao, Xinwu Ma, Guocheng Ren, “Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials,” Journal of Materials Processing Technology, Vol. 184, pp. 209-216, 2007.
    [22] Nagasekhar, A.V., Yip, T.H., Seow, H.P., “Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing,” Journal of Materials Processing Technology, Vol. 192–193, pp. 449-452, 2007.
    [23] Hong Jiang, Zhiguo Fan, Chaoying Xie, “3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion,” Materials Science and Engineering: A, Vol. 485, pp. 409-414, 2008.
    [24] Patil, V., Chakkingal, U., Prasanna Kumar, T.S., “Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation,” Journal of Materials Processing Technology, Vol. 209, pp. 89-95, 2009.
    [25] Nagasekhar, A.V., Yoon, S.C., Y. Tick-Hon, Kim, H.S., “An experimental verification of the finite element modeling of equal channel angular pressing,” Computational Materials Science, Vol. 46, pp. 347-351, 2009
    [26] Djavanroodi, F., Ebrahimi, M.,“Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation,” Materials Science and Engineering: A, Vol. 527, pp. 1230-1235, 2010.
    [27] Luri, R., C.J. Luis Pérez, D. Salcedo, I. Puertas, J. León, I. Pérez, J.P. Fuertes, “Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries,” Journal of Materials Processing Technology, Vol. 211, pp. 48-56, 2011.
    [28] Si, J.Y., Gao, F., Zhang, J., “Finite Element Analysis of Die Geometry and Process Conditions Effects on Equal Channel Angular Extrusion for β-Titanium Alloy,” Journal of Iron and Steel Research International, Vol. 19, pp. 54-58, 2012.
    [29] V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov,
    “Russian Metallurgy”, (Engl. Transl.), 1(1981), pp.115.
    [30] “DEFORMTM 2D Version 9.0 User’s Manual”, Scientific Forming Technologies Corporation.
    [31]F. Djavanroodi , H.Ahmadian , K . Koohkan , R .Naseri , “Ultraconic assisted-ECAP”, Ultrasonics,Volume 53, Issue 6, Pages 1089–1096, August 2013.
    [32]島川正憲,超音波工學理論實務,復漢出版社,1992
    [33] A.M. Goijaerts, L.E. Govaert and F.P.T. Baaijens, “Experimental and Numerical Investigation on the Influence of Process Speed on the Blanking Process”, ASME Journal of Manufacturing Science and Engineering, Vol 124, pp.416-419, 2002.
    [34] Fazil O. Sonmez, Ahmet Demir, “Analytical relations between hardness and strain for cold formed parts,”Journal of Materials Processing Technology, Volume 186, Issues 1–3, , Pages 163-1737, May 2007
    [35] A. Kawalek, ”Forming of Band Curvature in Asymmetrical Rolling Process,”Journal of Materials Processing Technology,155-156(2004) 2033-2038.

    QR CODE
    :::