跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊欣婕
Hsin-chieh Yang
論文名稱: 離子液體在氯仿中的聚集行為與其在奈米金屬催化劑合成上之應用
Aggregation of Ionic Liquid in Chloroform and Its Application in The Synthesis of Metal Nanoparticles for Use as Catalyst
指導教授: 劉陵崗
Liu, Ling-Kang
賴重光
Chung-Kung Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 98
語文別: 中文
論文頁數: 137
中文關鍵詞: 奈米離子液體
外文關鍵詞: nanoparticles, Ioinc Liquid
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    離子液體是近年來很熱門被頻繁探討的新穎溶劑,廣泛的應用在
    各個化學研究領域裡。奈米級金屬粒子在催化上的應用也非常受矚
    目。本篇主要在探討離子液體及其特殊的物、化性質,可以溶解過渡
    金屬鹽類,並且在金屬源還原成奈米粒子的過程中,保護住奈米金屬
    粒子,避免粒子聚集。
    我們以照光反應和微波反應合成出一系列奈米金屬粒子。先將離
    子液體1-丁基-3-乙基咪唑溴化物(1-butyl-3-ethyl-1H-imidazol-3-ium
    bromide, 4-2 Br) 和1-丁基-3-乙基咪唑氯化物
    (1-butyl-3-ethyl-1H-imidazol-3-ium chloride, 4-2 Cl) 各自溶於氘化氯
    仿中,分別和對應的金屬鹽類溴化鈀 (PdBr2) 和四氯金酸 (HAuCl4)
    作用,生成奈米金及奈米鈀粒子。
    我們發現離子液體 4-2 Br 與10 %之金屬鹽的氯仿溶液,可以用
    來追蹤不同濃度離子液體的聚集團簇行為,利用其中金屬鹽類還原成
    奈米金屬粒子來顯色,並表徵在TEM 圖片上面。我們也以螢光團染
    料3-羥基色原酮的衍生物
    2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA)、
    2-(4-(dimethylamino)phenyl)-3-hydroxy-4H-chromen-4-one (CF) 的發光光譜和激發光譜,得到離子液體在氯仿中聚集行為的證據。
    此等離子液體氯仿溶液中所生成的奈米鈀粒子被固定在離子液
    體層內,可以用來進行Heck 反應,為離子液體層與有機起始物/生成
    物的兩相催化反應系統,在溫和的條件下即可進行。


    Abstract
    Ionic liquid (IL) is a very popular medium which has been explored
    in recent years. It has been widely employed in various research
    fields. Nanoscale transition metal catalysts have also attracted increasing
    intrests. It has been mainly the study of special physical and chemical
    properties of ILs in order to make use of metal ions. Alternatively, ILs
    can prevent the metal nanoparticles from aggregation.
    Pd-nanoparticles and Au-nanoparticles were synthesized by UV
    irradiation or microwave heating of respective metal halide anions PdBr2
    and HAuCl4 in CDCl3 solution of 1-butyl-3-ethyl-1H-imidazol-3-ium
    bromide ,chloride(4-2Br and 4-2Cl), respectively.
    The 4-2 Br IL with 10 mol % metal salt in chloroform ionic liquid
    clustering exhibits at increasing concentration of 4-2 Br. After UV or
    microwave irradiation, the metal nanoparticles produced could serve as
    the contrasting agent on the TEM images, to correlate the concentrations
    of IL with the aggregation phenomena of IL. On a separate study,
    fluorescent dyes of 3-hydroxy chromone derivatives
    2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA) and
    2-(4-(dimethylamino)phenyl)-3-hydroxy-4H-chromen-4-one (CF) have
    been used to extract structural information from the luminescence and
    excitation spectra, which also reflect the the aggregation of ionic liquid in
    chloroform.
    The chloroform solution of 4-2 Br and 10% PdBr2 under UV or
    microwave irradiation generated the Pd nanoparticles in IL layer of 4-2
    Br which also protected the size of Pd nanoparticles from growing too fast. These Pd nanoparticles in IL were used in the Heck reactions.
    Initially ionic liquid layer with Pd NPs was added with organic materials
    for the two-phase catalytic Heck reactions, which could be carried out
    under mild conditions. The combinations of Pd nanoparticles and the IL
    conforms to goals of green chemistry in reducing environmental
    damages.

    目錄 目錄----------------------------------------------------------------------------------I 圖目錄----------------------------------------------------------------------------IV 表目錄--------------------------------------------------------------------------XIII 中文摘要-----------------------------------------------------------------------XIV 英文摘要----------------------------------------------------------------------XVI 謝誌---------------------------------------------------------------------------XVIII 第一章緒論------------------------------------------------------------------------1 1-1. 離子液體的起源---------------------------------------------------1 1-2. 離子液體簡介------------------------------------------------------1 1-3. 離子液體的性質---------------------------------------------------4 1-3.1. 熔點(Melting point)----------------------------------------------5 1-3.2. 溶解度 (Solubility) ----------------------------------------------6 1-4. 單核咪唑型陽離子離子液體簡介-------------------------8 1-4.1. 單核咪唑陽離子環上二號位置質子的酸性-----------------8 1-4.2. 咪唑離子液體在不同濃度下的結構變化------------------14 1-4.3. 利用理論計算表現咪唑離子液體微觀下的聚------------18 1-5. 微胞與介面活性--------------------------------------------------20 1-5.1. 離子液體為介面活性劑的一種------------------------------20 1-5.2. 表面張力與臨界微胞濃度(CMC)---------------------------21 1-6. 離子液體在化學反應上的應用--------------------------------24 1-6.1. 溶劑 ( Solvent ) ------------------------------------------------24 1-6.2. 催化劑------------------------------------------------------------25 1-6.3. 離子液體在Heck反應上的應用------------------------------25 1-6.4. Heck反應的發展-----------------------------------------------26 1-7. 研究動機------------------------------------------------------------29 第二章 實驗部份---------------------------------------------------------------30 2-1. 藥品------------------------------------------------------------------30 2-2. 儀器------------------------------------------------------------------32 2-2. 核磁共振譜儀(Nuclear Magnetic Resonance Spectrometer, 簡稱NMR)----------------------------------------------------------------32 2-2.2. 紫外光-可見光光譜儀(Ultraviolet-Visible Spectrophotometer) -----------------------------------------------------32 2-2.3. 螢光光譜儀(Fluorescence Spectormeter) -------------------33 2-2.4. 原子力顯微鏡 ( Atomic Force Microscopy , AFM ) -----33 2-2.5. 穿透式電子顯微鏡 ( Transmission electron microscopy, TEM ) ---------------------------------------------------------------------33 2-3. 合成流程------------------------------------------------------------35 2-3.1. 離子液體合成步-------------------------------------------------35 2-3.2. 奈米金屬製備---------------------------------------------------37 2-3.3. 鈀奈米粒子催化Heck反應------------------------------------55 2-3.4. 染料螢光光譜實驗製備---------------------------------------57 第三章 結果與討論------------------------------------------------------------60 3-1. 奈米金屬粒在離子液體裡的形成------------------------------60 3-1.1. 利用照光反應形成鈀奈米粒子------------------------------60 3-1-2. 利用微波反應形成鈀奈米粒子------------------------------66 3-1-3. 利用微波反應形成金奈米粒子------------------------------70 3-2. 離子液體溶於氯仿的聚集行為---------------------------------73 3-2.1. 用金屬成色的方法來觀察咪唑離子液體在溶液中的聚集 現---------------------------------------------------------------------------75 3-3. 以螢光發色團追蹤離子液體於氯仿中聚集的現象---------84 3-3.1. FA螢光團在離子液體氯仿溶液下的光物理表現---------86 3-3.2. CF螢光團在離子液體氯仿溶液下的光物理表現---------91 3-4. 將催化劑應用在Heck 反應上----------------------------------98 3-4.1. 鹼之變化對於此系統的Heck反應的影響------------------98 3-4.2. 芳香鹵化合物上對位基取代之變化-----------------------100 3-5. 結論----------------------------------------------------------------102 參考文獻----------------------------------------------------------------------104

    參考文獻
    1. Hurley, F. H.; Wier, T. P.; J., J. Electrochem. Soc. 1951, 98, 207.
    2. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage,
    P. D. Iong. Chem. 1983, 22, 2099.
    3. Erbeldinger, M.; Mesiano, A.; Ruessell, A. J. Biotechnol. Prog. 2000,
    16,1129.
    4. Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A.
    M. Anal. Chem. 2001, 73, 3838.
    5. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.;
    Weizbicki, A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001,
    135.
    6. Armstrong, D. W.; He, L.; Liu, Y.-S., Anal. Chem. 1999, 71, 3873.
    7. Wei, G. T.; Yang, Z.; Lee, C. Y.; Yang, H. Y.; Chris Wang, C. R. J.
    Am. Chem. Soc. 2004, 126, 5036.
    8. Hamaguchi, H.; Hayashi, S. Chem. Lett. 2004, 33, 12.
    9. Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
    10. Wasserschied, P., Welton, T., Eds.; Ionic Liquids in Synthesis; 2nd Ed.;
    Wiley-VCH: Weinheim, 2008.
    11. Pernak, J.; Czepukowicz, A.; Pozniak, R. Ind. Eng. Chem. Res. 2001,40, 2379.
    12. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1999, 13,
    2133.
    13. Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R. Seddon, K. R. J.
    Mater. Chem. 1998, 8, 2627.
    14. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
    15. Migowski, P.; Dupont, J. Chem.-Eur. J. 2007, 13, 32.
    16. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
    17. Brennecke, J. F.; Anderson, J. L.; Dixon, J. K. Acc. Chem. Res. 2007,
    40, 1208.
    18. Hiroyuki, O. Bull. Chem. Soc. Jpn. 2006, 79, 1665.
    19. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; Mccormac, P. B.;
    Seddon, K. R. Org. Lett. 1999, 1, 997.
    20. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo,
    K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349.
    21. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J.
    J. Am. Chem. Soc. 2005, 127, 3298.
    22. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
    23. Dyson, P. J.; Ellis, D. J.; Parke, D. G.; Welton, T. Chem. Commun.1999, 25.
    24. Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233.
    25. Chiappe, C.; Imprato, G.; Napolitano, E.; Pieraccini, D. Green Chem.
    2004, 6, 33.
    26. Vitz, J.; Mac, D. H.; Legoupy, S. Green Chem. 2007, 9, 431.
    27. Pan, X.; She, X.; Li, Y.; Zhang, J.; Wang, W.; Miao, Q. J. Org. Chem.
    2005, 70, 3285.
    28. Han, B.; Zhang, Z.; Xie, Y.; Li, W.; Hu, .; Song, J.; Jiang, T. Angew.
    Chem. Int. Ed. 2008, 47, 1127.
    29. Yabu, H.; Tajima, A.; Higuchi, T.; Shimomura, M. Chem. Commun.
    2008, 4588.
    30. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
    31. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem.
    1982, 1263
    32. Crampton, M. R.; Robotham, I. A. J. Chem. Res. 1997, 22
    33. Alder, R. W.; Allen, P. R.; Williams, S. J. J. Chem. Soc. Chem.
    Commun. 1995, 1267.
    34. Bonhate, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.;
    Gratzel, M. Inorg. Chem. 1996, 35, 1168.35. Koddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8,
    2464.
    36. Wulf, A.; Fumino, K.; Michalik, D.; Ludwig, R. ChemPhysChem
    2007, 8, 2265.
    37. Bagno, A.; Damico, F.; Saielli, G. J. Phys. Chem. B 2006, 46, 100,
    23004
    38. Bagno, A.; Damico, F.; Saielli, G. ChemPhysChem 2007, 8, 873.
    39. Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 31,
    110, 9775.
    40. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. H.; Watanabe, M. J.
    Phys. Chem. B 2005, 109, 6103.
    41. Welton, T. Chem. Rev. 1999, 99, 2071.
    42. Earle, M. J.; Esperanca, J. M.S.S.; Gilea, M. A.; Lopes, J. N. C.;
    Rebelo, L. P.N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature
    2006, 439, 831.
    43. Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.;
    Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Phys. Chem. A 2006, 110,
    7303.
    44. Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Satterley, C. J.; Villar-Garcia, I. J. Phys. Chem. Chem. Phys. 2007,
    9, 982.
    45. Santos, L. M. N. B. F.; Lopes, J. N. C.; Coutinho, J. A. P.; Esperancu
    a, J. M. S. S.; Gomes, L. R.; Marrucho, I. M.; Rebelo, L. P. N. J. Am.
    Chem. Soc. 2007, 129, 284.
    46. Emel’yanenko, V. N.; Verevkin, S. P.; Heintz, A. J. Am. Chem. Soc.
    2007, 129, 3930.
    47. Dasilveira Neto, B. A.; Santos, L. S.; Nachtigall, F. M.; Eberlin, M. N.;
    Dupont, J. Angew. Chem. Int. Ed. 2006, 45, 43, 7251.
    48. Hunt, P. A.; Kirchner, B.; Welton, T. Chem. Eur. J. 2006, 12, 6762 .
    49. Zana, R. Dynamics of Surfactant Self-Assemblies; CRC Press: Taylor
    & Francis, 2005.
    50. Klein, M. L.; Shinoda, W. Science 2008, 321, 798.
    51. Hess, B.; J. Chem. Theory Comput. 2008, 4, 435.
    52. Dyson, P.; Khalaila, I.; Luettgen,S.; McIndce, J.; Zhao, D. Chem.
    Commun. 2004, 2204.
    53. Dorbritz, S.; Ruth, W.; Kragl, U. Adv. Synth. Catal. 2005, 347,1273.
    54. Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T. J.
    Phys. Chem. B 2007, 111, 598.55. Motirale, B. G.; Yadav, G. D. Ind. Eng. Chem. Res. 2008, 47, 9081.
    56. Wang, M. L.; Huang, T. H. Chem. Eng.Comm. 2007, 194, 618.
    57. Dupont, J.; Prechtl, M. H.; Scariot, M.; Scholten, J. D.; Machado, G.;
    Teixeira, S. R. Inorg. Chem. 2008, 47, 6427.
    58. Rees, G. D.; Robinson, B. H. Adv. Mater. 1993, 5, 608
    59. Ishida, Y.; Miyauchi, H.; Sigo, K. Chem. Commun, 2002, 2240.
    60. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage,
    P. D. Inorg. Chem. 1983, 22, 2099 .
    61. Jaeger, D. A.; Tucker, C. E. Tetrahedron Lett. 1989, 38.
    62. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
    Seddon, K. R. Org. Lett. 1999, 1, 997.
    63. Bőhm, V. P.; Herrmann. W. A. J. Organomet. Chem. 1999, 572, 141.
    64. Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A.; Afeworki, M. J. Am.
    Chem. Soc. 2002, 124, 12932.
    65. Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun 2002,
    24, 3010.
    66. Welton, S. T.; Woolf, J.; Fischer, A. T.; Tetrahedron Lett. 1999, 40,
    793.
    67. Noto, R.; Anna, F. D.; Marullo, S. J. Org. Chem. 2008, 73, 6224.68. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
    69. Yao, Q.; Yang, Z.; Kinney, E. P. J. Org. Chem. 2003, 68, 7528.
    70. Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.;
    Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127.
    71. Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett.
    2003, 5, 10.
    72. Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
    73. Heck, R. F. J. Org. Chem. 1972, 37, 14
    74. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.;
    Seddon, K. R. Org. Lett. 1999, 1, 997
    75. Djakovitchm L.;Koehler, K. J. Am. Chem. Soc. 2001, 123, 5990.
    76. Biffis, A.; Zecca, M.; Basato, M. Eur. J. Inorg. Chem. 2001, 1131.
    77. Blum, J.; Hamza, K.; Abu-Reziq, R.; Avnir, D. Org. Lett. 2004, 6, 6,
    925.
    78. Hirao, T.; Tsukuda, T.; Sakurai, H. J. Org. Chem. 2002, 67, 2721.
    79. Mi, Z.; Liu, G.; Wang, L.; Zhang, X. Ind. Eng. Chem. Res. 2005, 44,
    3846.
    80. Rao, C. N. R.; Kulkarni, G. U.; Thomasa, P. J.; Edwards, P. P. Chem.
    Soc. Rev. 2000, 29, 27.
    81. De Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.
    Henderickx, H. J. W.; De Vries, J. G. Org. Lett. 2003, 5, 3285.
    82. Nanda, K. K.; Maisels, A.; Kruis, F. E.; Fissan, H.; Stappert, S. Phys.
    Rev. Lett. 2003, 9, 106102.
    83. Price, K. E.; Mason, B. P.; Bogdan, A. R.; Broadwater, S. J.;
    Steinbacher, J. L.; McQuade, D. T. J. Am. Chem. Soc. 2006,
    128,10376.
    84. Mu, X.-D.; Meng, J.-Q.; Li, Z.-C.; Kou, Y. J. Am. Chem. Soc. 2005,
    127, 9694.
    85. Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am.
    Chem. Soc. 2006, 128, 8714.
    86. Schwartz, J.; Bohm, V. P. W.; Gardiner, M. G.; Grosche, M.;
    Hermann, W. A.; Hieringer, W.; Raudaschl-Sieter, G. Chem.Eur. J.
    2000, 6, 1773.
    87. Byun, J.-W.; Lee, Y.-S Tetrahedron Lett. 2004, 45, 1837.
    88. Altava, B.; Burguete, M.; Garcia-Verdugo, E.; Karbass, N.; Luis, S.
    V.; Puzary, A.; Sans, V. Tetrahedron Lett. 2006, 47, 2311.
    89. Nikhil, R. J.; Wang, Z. L.; Tarasankar, P. Langmuir. 2000, 16, 2457.
    90. David, E. C.; Francis, P. Z.; Stephen, M. G.; Royce, W. M. Langmuir 2000, 16, 9699.
    91. Chanel, K. Y.; Rainer, J.; Abraham, U.; Henry, W.; Alexander, K.;
    Miriam, R.; Jonathan, S. Langmuir 1999, 15, 3486.
    92. Daniela, T.; Orietta, M.; Andrea, C.; Claudio,B.; Francesco, V.;
    Simonetta, M.; Saverio, R. Macromolecules 2003, 36, 4294.
    93. Joaquin, C.; Robert, W. J. S.; Richard, M. C. J. Am. Chem. Soc. 2003,
    125, 11190.
    94. Francis, P. Z.; Stephen, M. G.; Royce, W. M.; Langmuir 2001, 17,
    481.
    95. Tetsu, Y.; Kuniko, I.; Nobuo, K. Langmuir 2001, 17, 4701.
    96. Wang, C. C.; Chen, D. H.; Huang, T. C. Colloids and Surface A:
    Physicochemical and Engineering Aspects 2001, 189, 145.
    97. Srikant, P.; Marcia, T. G.; Raymond, C. K.; Karine, M.; Surya, P. G.
    K.; George, A. O.; Mark, E. T. Chem. Mater. 2000, 12, 1985.
    98. Kensuke, N.; Hideaki, I.; Yoshiki, C. Nano Lett. 2002, 2, 1183.
    99. Teranishi,T.; Miyake, M. Chem. Mater. 1998, 10, 594.
    100. Kiyoharu, T.; Yoshinori, F.; Yoshitsugu, H.; Takeji, H.; Langmuir
    1999, 15, 5200.
    101. Marcos, A. G.; Alexandre, P. U.; Giovanna, M.; Ricardo, R. B. C.; Wictor, C. M.; Jonder, M.; Gunter, E.; Jairton, D.; J. Am. Chem. Soc.
    2005, 127, 4588.
    102. Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H. Chem. Mater. 2000,
    12, 3006.
    103. Dhas, N. A.; Cohen, H.; Gedanken, A. J. Phys. Chem. B 1997, 101,
    6834.
    104. Bera, D.; Kuiry, S. C.; Patil, S.; Seal, S. Appl. Phys. Lett. 2003, 82,
    3089.
    105. Bera, D.; Kuiry, S. C.; Seal, S. J. Phys. Chem. B 2004, 108, 556.
    106. Aymonier, C.; Bortzmeyer, D.; Thomann, R.; lhaupt, R. M. Chem.
    Mater. 2003, 15, 4874.
    107. Pei-Feng H. and Kai-Ming C. Nanotechnology 2004, 15, 1059.
    108. Sudeshna, S.; Dipankar, S.; Piyali, D.; Rima, L.; Amitabha, S.
    Tetrahedron 2009, 65, 4367
    109. Zhang, G.; Zhou, H.; Hu, J.; Liu, M.; Kuang, Y. Green Chem., 2009,
    11, 1428
    110. Katayama, Y.; Bando, Y.; Miura, T. Transactions of the Institute of
    Metal Finishing 2008, 86, 4, 205-210.
    111. Zhong, C. M.; Zuo, Y. J.; Jin, H. S.; Wang, T. C.; Liu, S. Q. Acta Cryst. 2006, E62, m2281-m2283.
    112. Li, Z.; Liu, Z.; Zhang, J.; Han, B.; Du, J.; Gao, Y.; Jiang, T. J. Phy.
    Chem. B 2005, 109, 14445-14448.
    113. Ren, L.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P. J. Colloid Interface Sci.
    2008, 323, 260-266.
    114. Sebnem, E.; Andrey, S. K.; Alexander P. D. Anal. Chimi. Acta.
    2002 , 464, 273
    115. Xu, L.; Chen, W.; Xiao, J. Organometallics 2000, 19, 1123
    116. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.;
    Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349
    117. Fei, Z.; Zhao, D.; Pieraccini, D.; Ang, W. H.; Geldbach, T. J.;
    Scopelliti, R.; Chiappe, C.; Dyson, P. J. Organometallics 2007, 26,
    1588
    118. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J.
    Am. Soc. Chem. Soc. 2005, 3298

    QR CODE
    :::