| 研究生: |
林庭伃 Ting-Yu Lin |
|---|---|
| 論文名稱: |
桃園臺地水資源之氣候變遷衝擊與調適策略評估 Assessing Climate Change Impact and Water Resources Adaptation Measures of the Taoyuan Tableland in Taiwan |
| 指導教授: |
李明旭
Ming-Hsu Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 257 |
| 中文關鍵詞: | 氣候變遷 、水資源 、乾旱 、調適策略 、桃園臺地 |
| 外文關鍵詞: | Climate Change, Water Resources, Drought, Adaptation Measures, Taoyuan Tableland |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著社會經濟之蓬勃發展,桃園臺地逐漸面臨水資源供需失衡的挑戰。尤其是在氣候變遷衝擊日益嚴峻的情況下,如何有效進行水資源之調度管理為當前需要面對的重要課題。
本研究運用Vensim軟體建構桃園臺地水資源系統動力模型,整合區內各項供水設施、各標的用水需求與多元情境模擬,以提升模擬的靈活性,並納入氣候變遷推估資料進行模擬分析。根據各項指標結果顯示,在中期SSP5-8.5情境下,桃園臺地相較於基期將面臨停灌次數增加、供水穩定性下降與供水缺口擴大的挑戰。本研究透過擬定6種單一型調適策略(A至F)與4種複合型調適策略(G至J),評估各項調適策略在中期SSP5-8.5情境下之效益,分析各項調適策略對水資源供水系統韌性之影響,並分別在有停灌之方案與無停灌之方案進行模擬評估。
研究結果顯示,在有停灌之方案下,調適策略J(B+C+D+F)能同時提高公共用水及農業用水之供水穩定性並降低缺水程度,顯著提升桃園臺地面對氣候變遷挑戰下的水資源韌性。在無停灌方案條件下,調適策略G(A+C+D+E)與I(B+C+D+E)將能增加公共用水與部分農業用水之供水穩定度並且降低缺水程度。
The Taoyuan Tableland has gradually faced the challenge of imbalance between water supply and demand due to vigorous development of social-economy. Especially under the increasingly severe climate change, how to manage and allocate water resources effectively has emerged as a crucial challenge, forming the main motivation of this study.
This study used Vensim software to build a water resource system dynamic model for the Taoyuan Tableland. The model integrates various water supply facilities, irrigation water demand and public water demand, enhancing the diversity of simulation scenarios and incorporating climate change projections data for simulation analysis. According to the results of various indicators, under the mid-term SSP5-8.5 scenario, the Taoyuan Tableland will face challenges such as more frequent irrigation fallowing, decreased water supply stability, and a widening water supply gap compared with the base period. This study established six single adaptation measures (A to F) and four composite adaptation measures (G to J) to simulate and evaluate their performance under the mid-term SSP5-8.5 scenario. The goal is to assess the impact of each adaptation measure on the resilience of the water resources and water supply system, with simulations conducted under both irrigation fallowing and non-fallowing conditions.
According to the results , under the fallowing scheme, adaptation measures J (B+C+D+F) simultaneously improve the stability of both public and irrigation water supply and reduces water shortages, significantly enhancing the resilience of water resources in the Taoyuan Tableland under climate change. Under the no fallowing scheme, adaptation measures G(A+C+D+E) and I(B+C+D+E) can improve the stability of public water supply and partially improve irrigation water supply, while also reducing the extent of water shortages.
Babaeian, F., Delavar, M., Morid, S., & Srinivasan, R. (2021). Robust climate change adaptation pathways in agricultural water management. Agricultural Water Management, 252, 106904. https://doi.org/10.1016/j.agwat.2021.106904
Bijl, D. L., Biemans, H., Bogaart, P. W., Dekker, S. C., Doelman, J. C., Stehfest, E., & van Vuuren, D. P. (2018). A global analysis of future water deficit based on different allocation mechanisms. Water Resources Research, 54(8), 5803-5824. https://doi.org/10.1029/2017WR021688
Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022: Water. In:Climate Change 2022: Impacts, Adaptation, and Vulnerability.Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551-712. https://doi.org/10.1017/9781009325844.006
CHIEN, W.-H., HO, C.-C., CHIU, W.-C., WANG, T.-S., & TSAI, Y.-C. (2021). A Study on the Benefits of Water Resources Utilization for Connecting Farm Ponds in Taoyuan. 台灣水利, 69(4), 1-11. https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A2022157910
Chow, V. T. (1971). Applied hydrology. McGraw-Hill.
Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., 和 Zolina, O. (2021). Water cycle changes. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1055–1210). Cambridge University Press. https://doi.org/10.1017/9781009157896.010
Fang, W. T., Chien, C. P., & Chen, S. C. (2012). Study on agricultural benefits by increasing capacity of water ponds: a case study at Taoyuan paddy fields. Paddy and Water Environment, 10(3), 231–250. https://doi.org/10.1007/s10333-012-0312-8
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Schuckmann, K., 和 Vose, R. S. (2021). Changing state of the climate system. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 287–422). Cambridge University Press. https://doi.org/10.1017/9781009157896.004
Haith, D. A., Mandel, R., & Wu, R. S. (1992). GWLF: Generalized Watershed Loading Functions, Version 2.0, User's Manual. Dept. of Agricultural 和 Biological Engineering, Cornell University, Ithaca, NY.
Haith, D. A., & Shoemaker, L. L. (1987). Generalized watershed loading functions for stream flow nutrients 1. JAWRA Journal of the American Water Resources Association, 23(3), 471-478. https://doi.org/10.1111/j.1752-1688.1987.tb00825.x
Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. https://doi.org/10.1029/WR018i001p00014
Hsu, C.-C., & Lin, Y.-P. (2024). Incorporating long-term numerical weather forecasts to quantify dynamic vulnerability of irrigation supply system: A case study of Shihmen Reservoir in Taiwan. Agricultural Water Management, 306, 109178. https://doi.org/10.1016/j.agwat.2024.109178
Kaushika, G., Arora, H., & KS, H. P. (2019). Analysis of climate change effects on crop water availability for paddy, wheat and berseem. Agricultural Water Management, 225, 105734. https://doi.org/10.1016/j.agwat.2019.105734
Kothari, K., Ale, S., Attia, A., Rajan, N., Xue, Q., & Munster, C. L. (2019). Potential climate change adaptation strategies for winter wheat production in the Texas High Plains. Agricultural Water Management, 225, 105764. https://doi.org/10.1016/j.agwat.2019.105764
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barrett, K. (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University. http://hdl.handle.net/1885/299630
Liou, Y.-A., Wang, T.-S., & Chan, H.-P. (2013). Impacts of pond change on the regional sustainability of water resources in Taoyuan, Taiwan. Advances in Meteorology, 2013(1), 243456. https://doi.org/10.1155/2013/243456
Lu, Y., Tian, F., Guo, L., Borzì, I., Patil, R., Wei, J., Liu, D., Wei, Y., Yu, D. J., & Sivapalan, M. (2021). Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River. Hydrology and Earth System Sciences, 25(4), 1883-1903. https://doi.org/10.5194/hess-25-1883-2021
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391.
Li, M. H., Tseng, K. J., Tung, C. P., Shih, D. S,., & Liu, T. M. (2017). Assessing water resources vulnerability and resilience of southern Taiwan to climate change. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 28(1), 6. https://doi.org/10.3319/TAO.2016.08.23.02(CCA)
New, M., Reckien, D., Viner, D., Adler, C., Cheong, S.-M., Conde, C., Constable, A., de Perez, E. C., Lammel, A., & Mechler, R. (2022). Decision-making options for managing risk. In Climate Change 2022: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2539-2654). Cambridge University Press. https://doi.org/10.1017/9781009325844.026
Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J., & D’Odorico, P. (2020). Global agricultural economic water scarcity. Science Advances, 6(18), eaaz6031. https://doi.org/10.1126/sciadv.aaz6031
Rosa, L., Reimer, J. A., Went, M. S., & D’Odorico, P. (2020). Hydrological limits to carbon capture and storage. Nature Sustainability, 3(8), 658-666. https://doi.org/10.1038/s41893-020-0532-7
Shahbazbegian, M., & Bagheri, A. (2010). Rethinking assessment of drought impacts: a systemic approach towards sustainability. Sustainability Science, 5, 223-236. https://doi.org/10.1007/s11625-010-0110-4
Silber-Coats, N., Elias, E., Fernald, K., & Gagliardi, M. (2025). Evaluating alternative crops as a solution to water stress in the US Southwest. Agricultural Water Management, 312, 109439. https://doi.org/10.1016/j.agwat.2025.109439
Van Vuuren, D. P., Stehfest, E., Gernaat, D. E., Van Den Berg, M., Bijl, D. L., De Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., & Harmsen, M. (2018). Alternative pathways to the 1.5 C target reduce the need for negative emission technologies. Nature climate change, 8(5), 391-397. https://doi.org/10.1038/s41558-018-0119-8
Ventana Systems, Inc. (n.d.). Vensim software. https://vensim.com/software/
Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111-120. https://doi.org/10.1080/02508068508686328
Yang, Y., Yang, Y., Han, S., Macadam, I., & Li Liu, D. (2014). Prediction of cotton yield and water demand under climate change and future adaptation measures. Agricultural Water Management, 144, 42-53. https://doi.org/10.1016/j.agwat.2014.06.001
Yang, Y.-C. E., Brown, C., Yu, W., Wescoat Jr, J., & Ringler, C. (2014). Water governance and adaptation to climate change in the Indus River Basin. Journal of Hydrology, 519, 2527-2537. https://doi.org/10.1016/j.jhydrol.2014.08.055
中興工程顧問股份有限公司(2014)。石門水庫供水區水資源活化計畫。經濟部水利署北區水資源分署。
王尊麟(2019)。以遊戲模擬方法探討乾旱時期水市場機制對水資源再分配之可行性—以桃園地區為例。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/77xyew
台灣自來水公司(2024)。113年統計年報。https://www.water.gov.tw/ch/ServerFile/Get/fc15307b-f92d-4f08-b01a-7157f36364d7?nodeId=4571
行政法人國家災害防救科技中心(2025年6月25日)。乾旱災害調適選項。Dr.A氣候變遷災害風險調適平台。https://dra.ncdr.nat.gov.tw/Frontend/Disaster/StrategyDetail/BAL0000035
行政院(2021)。臺灣各區水資源經理基本計畫-核定本。https://www.wra.gov.tw/cp.aspx?n=30367
行政院新聞與公告(2019年10月30日)。蘇揆主持板新二期計畫第二階段通水 實現雙北共飲翡翠水。https://www.ey.gov.tw/Page/9277F759E41CCD91/c82815c8-ddbb-4b36-b9c2-0eab3b18f417
行政院農業委員會農田水利署(2023)。2022年行政院農業委員會農田水利署Annual Report。
李明旭(2024)。桃園臺地與海岸帶關鍵區永續發展跨域研究-桃園臺地與海岸帶關鍵區永續發展跨域研究:總計畫(1/3)。(計畫編號 No. NSTC 112-2621-M-008-003-)。國家科學及技術委員會補助專題研究計畫報告。
林永禎(2007)。桃園地區缺水之影響與經濟損失。水利技師公會聯合資訊網。https://www.hydraulic.org.tw/news2-1.asp?p1id=63和r=c
陳世偉(2007)。區域多元化水資源調配之研究。﹝博士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/vh8p7r
陳芳惠(1979)。桃園臺地的水利開發與空間組織的變遷。國立臺灣師範大學地理研究報告,5 1979.01[民68.01],49-77。https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A79018554
連宛渝(2013)。氣象合成與水文模式之發展及因應氣候變遷之供水系統調適能力建構。﹝博士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/7kx2ua
桃園市政府環境保護局(2025年6月1日)。河川水質監測。https://tydep.tycg.gov.tw/cp.aspx?n=20019
桃園市政府環境保護局(2017)。自然樂活 海好有你 桃園海岸生態保護白皮書(2017)。桃園市政府。
許晃雄、王嘉琪、陳正達、李明旭、詹士樑(2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭主編]。國家科學及技術委員會與環境部聯合出版。
經濟部水利署(2023年12月20日)。石門水庫運用要點。經濟部主管法規查詢系統。 https://law.moea.gov.tw/LawContent.aspx?id=FL021687
經濟部水利署(1995-2023)。各標的用水統計年報(84-112年)。https://wuss.wra.gov.tw/annuals.aspx
經濟部水利署(2024年6月14日)。石門水庫全力抽泥浚渫延長水庫壽命。經濟部水利署電子報。https://www.wra.gov.tw/epaper/Article_Detail.aspx?s=9163和n=30173
經濟部水利署(2023年12月20日)。石門水庫至新竹聯通管工程計畫。經濟部水利署電子報。https://www.wra.gov.tw/epaper/Article_Detail.aspx?s=7412和n=30173
經濟部水利署(2022)。百年大旱挑戰水利署推「珍珠串聯」力抗缺水噩夢。
經濟部水利署水利規劃試驗所(2010)。桃竹地區灌溉配水與停灌對灌溉用水影響研究(2/2)。
經濟部水利署北區水資源分署(2008)。石門水庫水權水量之分析及研究檢討。
經濟部水利署北區水資源分署(2015)。104年北部地區抗旱應變報告。
經濟部水利署北區水資源分署(2018-2023)。經濟部水利署北區水資源分署統計年報(107-112年)。
經濟部水利署北區水資源分署(2023年10月25日)。石門水庫主題網。https://web.wra.gov.tw/shihmen
國家科學委員會臺灣氣候變遷推估資訊與調適知識平台(113年1月12日)。臺灣氣候變遷推估資訊與調適知識平台。https://tccip.ncdr.nat.gov.tw/
農業工程研究中心、簡傳彬(2006)。利用桃園地區埤塘輔助民生及工業用水之可行性評估。經濟部水利署北區水資源分署。https://web.wra.gov.tw/wralib/WraLib/wSite/books_51060
農業工程研究中心、簡傳彬(2006)。利用桃園地區埤塘輔助民生及工業用水之可行性評估:利用埤塘蓄水緊急支援民生用水之可行性評估。經濟部水利署北區水資源分署。
農業部農田水利署(2021年8月31日)。關於桃園大圳的一些事項。 https://www.ia.gov.tw/zh-TW/media/StoryContent?a=109和id=433和p=4和listid=109
農業部農田水利署(2019)。灌溉學識相關文件。https://www.ia.gov.tw/zh-TW/service/FileDownloadList?a=151
農業部農田水利署桃園管理處(2012)。民國101年灌溉計畫書。
農業工程研究中心(2020)。臺灣石門農田水利會因應亢旱石門大圳之配水研究計畫成果報告。農業部農田水利署石門管理處。
農業工程研究中心(2002)。石門大圳用水計畫檢討。農業部農田水利署石門管理處。
農業部農田水利署石門管理處(2023年11月4日)。灌區環境。https://www.iasme.nat.gov.tw/about/Articles?a=10882
臺灣氣候變遷推估資訊與調適知識平台(2024)。https://tccip.ncdr.nat.gov.tw/
鄭文燦(編著)(2022)。286天迎戰百年大旱。桃園市政府經濟發展局。https://www.tycg.gov.tw/