跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱照嚴
Chao-Yen Chiu
論文名稱: 以聚合式階層分群演算法應用於超聲波FMCW雷達系統
Agglomerative Hierarchical Clustering on Ultrasonic FMCW Radar System
指導教授: 林嘉慶
Jia-Chin Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 調頻連續波非監督式學習分群演算法階層式分群法
外文關鍵詞: FMCW, unsupervised learning, clustering algorithm, hierarchical clustering
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將使用階層分群法(Hierarchical Clustering),來對由調頻連續波雷達(FMCW radar, Frequency Modulated Continuous Waveform radar)量測出的結果進行模擬及分析。首先會先介紹FMCW雷達系統在測量距離上之應用,再來使用階層式分群法來對收集到的資料進行分群(cluster),以提升FMCW雷達系統分辨物體準確度。
    調頻連續波雷達,是指發射頻率受特定信號調製的連續波雷達,在掃頻週期內發送頻率變化的連續波,被物體反射之後的回波與發射信號有一定的頻率差,通過測量頻率差可以獲得目標與雷達之間的距離
    階層式分群法是透過一種階層架構的方式,將資料反覆進行分裂或聚合以產生樹狀圖(dendrogram),常見的方法有聚合式(agglomerative)和分裂式(divisible)兩種,由於不同情景、距離皆會使蒐集到的資料性不同,本文採用前者中的單一鏈結(Single Linkage)算法、完整鏈結(Complete Linkage)算法、平均鏈結(Average Linkage)算法及沃德法(Ward’s Method),並且比較各種算法適用於各種場景之資料分群效果。


    This paper will use Hierarchical Clustering to simulate and analyze the results measured by Frequency Modulated Continuous Waveform radar. First, the application of the FMCW radar system in measuring distance will be introduced, and then the collected data will be clustered using the hierarchical clustering method to improve the accuracy of the FMCW radar system in measuring objects.
    FMCW radar refers to a continuous wave radar whose emission frequency is modulated by a specific signal. It transmits a continuous wave whose frequency changes during the frequency sweep period. The echo reflected by the object has a certain frequency difference with the transmitted signal. By measuring the frequency difference, the distance between the target and the radar can be obtained.
    The Hierarchical Clustering method agglomerates and divides data repeatedly to generate a dendrogram, called agglomerative clustering and divisible clustering. Afterward, according to different situations and distances, the collected data will be different, we compared the Single Linkage , Complete Linkage, Average Linkage and Ward's Method are applicable to the clustering results of various scenarios.

    第一章 序論 - 1 - 1.1 研究背景與演進 - 1 - 1.2 研究動機 - 2 - 1.3 論文大綱 - 3 - 第二章 調頻連續波FMCW雷達 - 4 - 2.1 調頻連續波雷達概念 - 4 - 2.2 基頻信號分析 - 6 - 2.3 相位因子[F(t)-F(t-τ)]的瞬時變化 - 7 - 2.4 基頻信號傅立葉展開 - 9 - 2.5 調變鋸齒波之傅立葉係數 - 9 - 2.6 鋸齒波基頻信號傅立葉展開 - 10 - 2.7 基頻信號距離相關頻譜 - 11 - 第三章 資料分群演算法 - 14 - 3.1 資料分群的定義與過程 - 14 - 3.1.1 資料分群過程 - 14 - 3.2 資料分群演算法基本概念 - 15 - 3.2.1 階層式分群演算法 - 16 - 3.2.2 密度基底式、分割式及網格式分群演算法 - 18 - 3.3 聚合型階層式分群演算法 - 19 - 3.3.1 單一鏈結聚合演算法 - 19 - 3.3.2 完整鏈結聚合演算法 - 20 - 3.3.3 平均鏈結聚合演算法 - 21 - 3.3.4 沃德算法 - 22 - 第四章 實驗結果與討論 - 24 - 4.1 量測與資料收集 - 24 - 4.1.1 系統建置 - 24 - 4.1.2 目標點分析及繪製 - 25 - 4.2 實驗一 - 27 - 4.2.1 實驗資料 - 27 - 4.2.2 實驗結果 - 27 - 4.3 實驗二 - 30 - 4.3.1 實驗資料 - 30 - 4.3.2 實驗結果 - 31 - 4.4 實驗三 - 35 - 4.4.1 實驗資料 - 35 - 4.4.2 實驗結果 - 36 - 4.5 實驗四 - 40 - 4.5.1 實驗資料 - 40 - 4.5.2 實驗結果 - 41 - 第五章 結論與未來展望 - 45 - 5.1 結論 - 45 - 5.2 未來展望 - 45 - 參考文獻 - 47 -

    [1] R. Zhang, W. Gong, V. Grzeda, A. Yaworski and M. Greenspan, "Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models," IEEE Signal Processing Letters, vol. 31, no. 2, pp. 1130-1134, Sept 2014.
    [2] Y. Zhang, X. Sun, H. Xu and E. Yao, "Tracking Multi-Vehicles With Reference Points Switches at the Intersection Using a Roadside LiDAR Sensor," IEEE Access, vol. 31, no. 2, pp. 174072 - 174082, 2019.
    [3] M. Vespe, G. Jones and C. J. Baker, "Lessons for Radar," IEEE Signal Processing Magazine, vol. 8, pp. 65-75, 13 Feb. 2009.
    [4] H. Rohling and M.-M. Meinecke, "Waveform design principles for automotive radar systems," in 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559), 2001.
    [5] KarthikRamasubramanian, "Using a complex-baseband architecture in FMCW radar systems," Texas Instruments.
    [6] Y. D. Lei, M. K. Raja and Z. Z. Gang, "Multiplier for 77GHZ FMCW Radar in ADAS cars," in 2020 IEEE Asia-Pacific Microwave Conference (APMC), HongKong, 2020.
    [7] Z. Yi, R. Zhange, B. Xu, Y. Chen, L. Zhu, F. Li, G. Yang and Y. Luo, "A wide-angle beam scanning antenna in E-plane for K-band radar sensor," IEEE Access, pp. 1171684-1171690, Nov. 2019.
    [8] Y. Rani and H. Rohil, "A Study of Hierarchical Clustering Algorithm," ISSN 0974-2239 Volume 3, pp. 1225-1232, 11 Nov. 2013.
    [9] 雷達通信電子戰, "詳細分析:FMCW雷達測距/測速原理,及典型應用場景".
    [10] H. Cheng and W. Lou, "Push the Limit of Device-Free Acoustic Sensing on Commercial Mobile Devices," in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, Vancouver, BC, Canada, 2021.
    [11] M. Kunita, M. Sudo and T. Mochizuki, "Range Measurement using Ultrasound FMCW Signals," in 2008 IEEE Ultrasonics Symposium, Beijing, China, 2008.
    [12] K. Masanori and N. Masakazu, "Clutter Reduction in Ultrasound FMCW Doppler Measurement System," in IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences (Japan Edition)), Japan, 2004.
    [13] I. Komarov and S. Smolskiy, Fundamentals of Short-Range FM Radar, Artech, 2003.
    [14] M. Kunita, "Range Measurement in Ultrasound FMCW System," in Electronics and Communications in Japan, Part 3, Vol. 90, No. 1, 2007, Japan, 2007.
    [15] E. O. Brigham, The Fast Fourier Transform, Japan, 1978.
    [16] T.-W. Yang, "A Study on a Hierarchical Clustering Algorithm Based on Gravity Theory," Taipei, 2001.
    [17] A. Jain, M. Murty and P. Flynn, "Data Clustering: A Review," ACM Computing Surveys, pp. 264-323, 1999.
    [18] Y. Sung and S. Ogawa , "A New Hierarchical Clustering Algorithm," in ICIIBMS 2015, Track2: Artificial Intelligence, Robotics, and Human-Computer Interaction, Okinawa, Japan, 2015.
    [19] P. Cichosz, Data Mining Algorithms: Explained Using R, John Wiley & Sons, Ltd., 2015.
    [20] M. Ester, H.-P. Kriegel, J. Sander and . X. Xu, "A Density-Based Algorithm for Discovering Clusters," in 1996, AAAI (www.aaai.org)., 1996.
    [21] M. Kaur and U. Kaur, "Comparison between k-means and hierarchical algorithm using query redirection," International Journal of Advanced Research in Computer Science and Software Engineering, pp. 1454-1455, 7 July. 2013.
    [22] N. H. Park and W. S. Lee, "Statistical grid-based clustering over data streams," ACM SIGMOD Record,Volume 33Issue 1, pp. 32-37, March. 2004.
    [23] K.Sasirekha and P.Baby, "Agglomerative Hierarchical Clustering Algorithm- A Review," International Journal of Scientific and Research Publications, March 2013.
    [24] K. K. Mohbey and G. S. Thakur, "An Experimental Survey on Single Linkage Clustering," International Journal of Computer Applications (0975 – 8887) Volume 76– No.17, pp. 6-11, Aug. 2013.
    [25] D. Defays, "An efficient algorithm for a complete link method," The Computer Journal, Volume 20, Issue 4, pp. 364-366, Jan. 1977.
    [26] R. R. Sokal and C. D. Michener, A Statistical Method for Evaluating Systematic Relationships, University of Kansas, 1958.
    [27] J. H. J. Ward, "Hierarchical Grouping to Optimize an Objective Function," Journal of the American Statistical Association, pp. 236-244, 1963.
    [28] G. Szekely and M. Rizzo, "Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method.," Journal of Classification, pp. 151-183, Sep. 2005.
    [29] D. Eppstein, "Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs," The ACM Journal of Experimental Algorithmics, pp. 1-23, 2000.
    [30] S. Kim and H. Kim, "Positional uncertainty assessment and complex obstacle detection of an ultrasonic sensor ring with overlapped beam pattern," in 2011 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea (South), 2011.
    [31] T. Kurita, "An efficient agglomerative clustering algorithm using a heap," Pattern Recognition, pp. 205-209, 1991.
    [32] J. Meunier and M. Bertrand, "Ultrasonic texture motion analysis: theory and simulation," IEEE Transactions on Medical Imaging, pp. 293-300, June 1995.
    [33] Y. Rani and H. Rohil, "A Study of Hierarchical Clustering Algorithm," ISSN 0974-2239 Volume 3, pp. 1225-1232, 11 Nov. 2013.

    QR CODE
    :::