跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉俊伯
Jyun-Bo Liu
論文名稱: 鋁、鎂合金熱成長氧化膜之微結構與熱反應
指導教授: 施登士
Teng-Shih Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 熱成長氧化膜乾磨通道微通道
外文關鍵詞: thermal oxide film, micro-pore, pore, dry ground
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討鋁與鎂合金熱成長氧化膜的分析,使用的材料有純鋁(99.999%)、鋁錠(99.82%)、純鎂(99.956%)、鎂合金AZ80四種。試片裁切成10 mm × 10 mm × 6 mm的大小,使用400號、800號、1200號、1500號跟2000號砂紙將表面乾磨,然後放在加熱爐中加熱到610℃、427℃,持溫1小時、25小時以生長氧化膜。
    實驗結果發現氧化膜中有通道/微通道的結構,通道是因為材料中particle所造成的,可以在鋁錠的試片上利用顯微鏡觀察到。而鋁的微通道是因為非均質氧化膜轉換成均質氧化膜所造成的,同時也形成白點特徵。而鎂合金試片只有觀察到微通道,這是因為鎂蒸氣壓大的關係,所以通道的部分後來就因為鎂的擴散而變為微通道。
    另外若再加熱長膜的時候使用保護性氣體SF6,在純鎂試片的氧化膜中可以發現到具有保護作用的MgF2層與少量的MgS,其為使鎂合金在熔化及鑄造時減少燃燒趨勢的原因。


    The purpose of this study is analyzing the thermal-formed oxide on aluminum and magnesium alloys. Four materials, pure aluminum (99.999 wt.%), aluminum ingot (99.82 wt.%), pure magnesium (99.956 wt.%), and magnesium alloy AZ80 were used in this study. The cube samples were prepared in 10 mm × 10 mm × 6 mm. They were then polished by #400, #800, #1200, #1500 and #2000 abrasive paper. These cube samples were moved to the muffle furnace and then heated to 610℃, 427℃ and hold on for 1 hr, 25hrs.
    There are pore/micro-pore structures in the oxide film from the result of experimental. The pores are caused from the particle in the matrix. They are saw in aluminum samples using optical microscope. And the micro-pores of aluminum are caused from the transformation of amorphous oxide film to non-amorphous oxide film, the white dots characters formed at the same time. There are only micro-pores in the magnesium alloys samples. Because the high vapor pressure of magnesium, magnesium diffusion to pore to form oxide and pores become micro-pore.
    There are protective layer MgF2 and a little MgS if we use protective gas SF6 during producing pure magnesium oxide film. This layer is the cause of reducing magnesium alloys burring tendency in melting and casting.

    中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………II 總目錄……………………………………………………………………………III 表目錄……………………………………………………………………………VI 圖目錄……………………………………………………………………………VII 第一章 前言…………………………………………………………………… 1 第二章 文獻回顧……………………………………………………………… 2 2.1 鋁合金的簡述…………………………………………………………… 2 2.1.1 鋁合金的類型……………………………………………………… 2 2.1.2 鑄造用鋁合金的分類……………………………………………… 2 2.1.3 純鋁(1XX.X)………………………………………………………… 3 2.1.4 影響熔湯表面張力的元素………………………………………… 3 2.2 氧化鋁的生成…………………………………………………………… 3 2.2.1 氧化鋁的種類……………………………………………………… 3 2.2.2 氧化鋁的形成……………………………………………………… 5 2.2.3 化學分析電子儀(ESCA)診斷氧化鋁膜…………………………… 7 2.3 鎂合金材料簡介………………………………………………………… 7 2.3.1 鎂資源及其製造…………………………………………………… 8 2.3.2 鎂合金材料特性…………………………………………………… 8 2.3.3 鎂合金的分類……………………………………………………… 9 2.3.4 合金元素的影響…………………………………………………… 10 第三章 實驗方法與步驟……………………………………………………… 13 3.1 實驗目的………………………………………………………………… 13 3.2 實驗材料………………………………………………………………… 13 3.2.1 純鋁材料…………………………………………………………… 13 3.2.2 純鎂材料…………………………………………………………… 13 3.2.3 鎂鋁合金…………………………………………………………… 13 3.3 試片規格………………………………………………………………… 13 3.4 實驗設備………………………………………………………………… 14 3.5 實驗步驟………………………………………………………………… 15 3.5.1 氧化膜生長………………………………………………………… 15 3.5.2 固溶處理…………………………………………………………… 15 第四章 結果與討論…………………………………………………………… 16 4.1 鋁氧化膜………………………………………………………………… 16 4.1.1 試片表面處理……………………………………………………… 16 4.1.2 掃描式電子顯微鏡(SEM)的觀察………………………………… 18 4.1.3 化學分析電子儀(ESCA)的檢測…………………………………… 18 4.1.4 電子探針微分析儀(EPMA)的檢測………………………………… 19 4.1.5 鋁氧化膜討論……………………………………………………… 19 4.2 鎂氧化膜………………………………………………………………… 20 4.2.1 試片表面處理……………………………………………………… 20 4.2.2 掃描式電子顯微鏡(SEM)的觀察………………………………… 20 4.2.3 化學分析電子儀(ESCA)的檢測…………………………………… 21 4.2.4 電子探針微分析儀(EPMA)的檢測………………………………… 21 4.2.5 鎂氧化膜討論……………………………………………………… 22 4.3 使用保護性氣體SF6的鎂氧化膜……………………………………… 22 4.3.1 試片表面處理……………………………………………………… 22 4.3.2電子探針微分析儀(EPMA)的檢測………………………………… 23 4.3.3使用保護性氣體SF6的鎂氧化膜討論……………………………… 23 4.4 鎂合金AZ80氧化膜…………………………………………………… 24 4.4.1 試片表面處理……………………………………………………… 24 4.4.2 掃描式電子顯微鏡(SEM)的觀察………………………………… 24 4.4.3 化學分析電子儀(ESCA)的檢測…………………………………… 25 4.4.4 電子探針微分析儀(EPMA)的檢測………………………………… 25 4.4.5鎂合金AZ80氧化膜討論…………………………………………… 25 4.5 鎂合金Mg-9Al-0.5Zn-0.3Be氧化膜(文獻)…………………………… 26 4.5.1 試片準備……………………………………………………………26 4.5.2化學分析電子儀(ESCA)的檢測…………………………………… 26 4.5.3鎂合金Mg-9Al-0.5Zn-0.3Be氧化膜討論………………………… 26 4.6 綜論………………………………………………………………………27 第五章 結論…………………………………………………………………… 28 參考文獻…………………………………………………………………………29 附錄………………………………………………………………………………91

    參考文獻
    1. R. A. Robie, B. S. Hemingway, J. R. Fisher, Thermodynamics Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascal) pressure and at Higher Temperature, U.S. Government Printing Office, Washington, 1978 p.137-248
    2. I. J. Polmear, Light Alloys:Metallurgy of the Light Metals, 3rd ed., John Wiley & Sons, New York, 1995
    3. C. R. Loper, Jr., “Fluidity of Aluminum-Silicon Casting Alloys, AFS Transactions”, 100 (1992) 533-538.
    4. P. S. Santos, H. S. Santos, S. P. Toledo, “Standard Transition Aluminas. Electron Microscopy Studies”, Materials Research, 3 (2000) 104-114.
    5. S. W. Whangbo, Y. K. Choi, W. S. Koh, K. B. Chung, H. K. Jang, C. N. Whang, “Effect of Silicon Surface States on the Properties of Epitaxial Al2O3 Films”, Thin Solid Films, 398-399 (2001) 480-484.
    6. L. D. Hart, Esther Lense, Alumina Chemicals:Science and Technology Handbook, American Ceramic Society, Westerville, Ohio, 1990, p.32, 50
    7. William D. Callister, Jr., Materials Science and Engineering:An Introduction, 4th ed, John Wiley & Sons, New York, 1997, p.38.
    8. M. R. Alexander, G. E. Thompson, G. Beamson, “Characterization of the Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron Spectroscopy: A Procedure for Curve Fitting the O 1s Core Level”, Surface and Interface Analysis, 29 (2000) 468-477.
    9. 林敬二、楊美惠、楊寶旺、廖德章、薛敬和,英.中.日 化學大辭典,高立圖書有限公司,台北,2000,p.70、380、927、1364
    10. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed, Wiley, New York, 1976, p.64, 65
    11. I. Levin, D. Brandon, “Metastable Alumina Polymorphs:Crystal Structures and Transition Sequences”, Journal of the American Ceramic Society, 81 (1998) 1995-2012.
    12. 宋啟瑞,在鋁上成長堰層陽極氧化膜的研究,國立交通大學材料科學與工程研究所碩士班論文,新竹,民國九二年七月
    13. Per Kofstad, High Temperature Oxidation of Metals, John Wiley & Sons, New York, 1966
    14. 徐東明,熱成長氧化膜防治S44660不銹鋼氫脆之研究,國立中興大學材料工程學研究所碩士班論文,台中,民國八八年七月
    15. P. E. Doherty, R.S. Davis, “Direct Observation of the Oxidation of Aluminum Single-Crystal Surfaces”, Journal of Applied Physics, 34 (1963) 619-628.
    16. P. E. Doherty, R.S. Davis, “The Formation of Surface Pits by the Condensation of Vacancies”, Acta Metallurgica, 7 (1959) 118-123.
    17. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer, “Composition and Chemical State of the Ions of Aluminium-Oxide Films Formed by Thermal Oxidation of Aluminum”, Surface Science, 506 (2002) 313-332.
    18. P. C. Snijders, L. P. H. Jeurgens, W. G. Sloof, “Structure of Thin Aluminium-Oxide Films Determined From Valence Band Spectra Measured Using XPS”, Surface Science, 496 (2002) 97-109.
    19. O. Salas, H. Ni, V. Jayaram, K. C. Vlach, C. G. Levi, R. Mehrabian, “Nucleation and Growth of Al2O3/metal Composites by Oxidation of Aluminum Alloys”, Journal of Materials Research, 6 (1991) 1964-1981.
    20. S. W. Whangbo, Y. K. Choi, H. K. Jang, Y. D. Chung, I. W. Lyo, C. N. Wang, “Effect of Oxidized Al Prelayer for the Growth of Polycrystalline Al2O3 Films on Si Using Ionized Beam Deposition”, Thin Solid Films, 388 (2001) 290-294.
    21. J. F. Moulder, W. F. Stickle, P. E. Sobal, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physics Electronics, Inc., Minnesota USA, 1992 p.213-239.
    22. J. F. King, “Development of Magnesium Diecasting Alloys”, Magnesium Alloys and their Applications, Werkstoff Informationsgesellschft mbH, Hamburger, 1998 p.37-47.
    23. 楊智超,鎂合金材料特性及新製程發展,工業材料,152 (1999) 72-80.
    24. Edgar Robert L., “Magnesium Supply and Demand 1998”, Magnesium Internal of Conference, Brussels, 1998 p.1-6.
    25. B. L. Mordike, T. Ebert, “Magnesium:Properties – Applications – Potential, Materials Science and engineering”, A302 (2001) 37-45.
    26. G. Pettersen, H. Westengen, R. Hoier, O. Lohne, “Microstructure of a pressure die cast magnesium-4wt% aluminium alloy modified with rare earth additions”, Materials Science and Engineering, A207 (1996) 115-120.
    27. Barcik J., Standard Practice For Temper Designations of Magnesium Alloys, Cast and Wrought, 1994 Annual Book of ASTM Standards, 2 (1999) 153-159
    28. 范光堯,“機械成形技術於鎂合金材料的應用概況”,工業材料,162 (2000) 139-144.
    29. Heike Bommer, “Characterization of the Corrosion Behavior and Solutions for the Corrosion Protection of Mg alloys”, Magnesium Alloys and their Applications, Werkstoff Informationsgesellschft mbH, Hamburger, 1998 p.79-90.
    30. ASM, Magnesium Alloys, Metals Handbook, 6 9th (1985) 425-434.
    31. 賴耿陽,非鐵金屬材料,復漢出版社,台南,1998,p.174-191.
    32. 賴耿陽,工業材料之應用,復漢出版社,台南,1990,p.35-38.
    33. 張永耀,金屬熔銲學(下冊),徐氏基金會,台北,1976,p.134-170.
    34. Brooks, C. R., Heat Treatment, Structure and Properties of Nonferrous Alloys. ASM International, Metals Park, OH, 1984.
    35. ASM Metals Handbook, ASM International, Metals Park, OH, 1979.
    36. S. Celotto, “Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy”, Acta Materialia, 49 (2001) 41-51.
    37. R. S. Busk, “Lattice Parameters of Magnesium Alloys”, Journal of Metals, Transactions Aime, 188 (1950) 1460-1464.
    38. Olsen, A. L., “Corrosion properties of new magnesium alloys”, Metall, 46 (1992) 570-574.
    39. X. Q. Zeng, Q. D. Wang, Y. Z. Lu, W. J. Ding, C. Lu, Y. P. Zhu, C. Q. Zhai and X. P. Xu, “Study on Ignition Proof Magnesium Alloy With Beryllium And Rare Earth Additions”, Scripta Materialia, 43 (2000) 403-409.
    40. X. Q. Zeng, Q. D. Wang, Y. Z. Lu, Y. P. Zhu, W. J. Ding, Y. H. Zhao, “Influence of Beryllium And Rare Earth Additions on Ignition-Proof Magnesium Alloys”, Journal of Materials Processing Technology, 112 (2001) 17-23.
    41. C. Houska, “Beryllium in Aluminium and Magnesium Alloys, “Metals and Materials : the Journal of the Institute of Metals, 4 (1988) 100-104.
    42. G. Foerster, “HiLoN: A New Approach to Magnesium Die Casting”, Advanced Materials and Processes, 154 (1998) 79.
    43. 陳英昌,鋁合金中氧化膜的生長與分解,國立中央大學機械工程研究所碩士班論文,桃園,民國九二年七月
    44. ASM Handbook, Heat treating-standard Content, DIALOG OnDiskR Books, 1991.
    45. X. Q. Zeng, Q. D. Wang, Y. Z. Lu, W. J. Ding, Y. P. Zhu, C. Q. Zhai, C. Lu, X. P. Xu, “Behavior of Surface Oxidation on Molten Mg-9Al-0.5Zn-0.3Be Alloy, Materials Science and Engineering”, A301 (2001) 154-161.
    46. International Centre for Diffraction Data, PCPDFWIN – Powder Diffraction File(粉末繞射光碟資料庫), International Centre for Diffraction Data, (2001).
    47. Y. Wu, Y. Zhang, G. Pezzotti, J. Guo, Influence of AlF3 and ZnF2 on the Phase Transformation of Gamma to Alpha Alumina, Materials Letters, 52 (2002) 366-369.

    QR CODE
    :::