| 研究生: |
陳正忠 Zhen-Zhong Chen |
|---|---|
| 論文名稱: |
關於超循環算子的一些基本性質 |
| 指導教授: |
蕭勝彥
Sen-Yen Shaw |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 超循環算子 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Hypercyclic operators的定義可以說是從Devany chaos operator定義中的一個性質發展出來的,也是最常被提到一種chaos system,其年代可追溯到西元1969年。
研究的方法以不同的觀點來觀察hypercyclic operators的定義,並以循序漸進的方法來描述hypercyclic operators的形式。從metric space上的mappings,到Banach space上的operators,再到Banach space上的 linear operators,一直到Banach space上的bounded linear operator,然後在和一些強連續半群下的已知結果互相比較。
最後,在Banach space上的bounded linear operators有比較明顯的可判別結果。在Kato收斂意義下,不見得保有原來hypercyclic的性質但是在某些條件下則會成立。Hereditary hypercyclic operators可得到更好的結果。然後,從第一節和第五節中可看出它們有一些近似的結果。
[1] S. I. Ansari, Hypercyclic and cyclic vectors,J. Funct. Anal. 128 (1995), 374-383.
[2] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(1991), 229-269.
[3] C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math 63(1988), 1-40.
[4] R. deLaubenfels, H. Emamirad and V. Protopopescu, Linear chaos and approximation.
[5] J. Banks, J. Brooks, G.Cairns, G. Davis, and P. Stacey, On Devaney''s definition of chaos, Amer. Math. Monthly 99(1992), 332-334.
[6] T. Ushijima, Approximation theory for semigroups of linear operators, Japan J. Math. 1 (1975), 185-224.
[7] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36(1999), 345-381.
[8] F. Leaon-Saavedra and A. Montes-Rodriguez. Linear structure of hypercyclic vectors, J. Funct. Anal. 148(1997), 524-545.
[9] H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112(1991), 765-770.
[10] J. Bes, Hereditarily hypercyclic operators ,J.Funct.Anal. 167 (1999), 94-112.
[11] A. Montes-Rodriguez, Banach spaces of hypercyclic vectors, Michi gan Math. J. 43. No. 3 (1996), 419-436.
[12] P. S. Bourdon. Invariant manifolds of hypercyclic vectors. Proc. Amer. Math. Soc. 118, No. 3 (1993), 845-847.
[13] S. Rolewicz, On orbits of elements, Studia Math. 32(1969), 17-22.
[14] B. Beauzamy, Un operateur, sur l''espace de Hilbert, dont tour les polynomes sont hypercycliques, C. R. Acad. Sci. Paris Ser. I Math. 303(1986), 923-925.
[15] D. A Herrero, Hypercyclic operators and chaos, J.Operator Theory 28(1992), 93-103.
[16] G. D. Birkhoff. Demonstration d''un theoreme elementaire sur les fonctions entieres. C. R. Acad. Sci. Paris. 189(1929), 473-475.
[17] T. Kato, Perturbation Theorem for Linear Operators, Spring-Verlag, New York, Berlin, 1966.
[18] W. Desch, W. Schappacher, and G. Webb, Hypercyclic and chaotic semigroups of linear operators*, Ergod. Th. Dynam.Sys.(1997)17,793-819.
[19] R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100(2)(1987),281-288.
igskip
[20] C. Kitai, "Invariant Closed Sets for Linear Operators." Thesis, University Toronto,