| 研究生: |
曾姮誼 Heng-I Tseng |
|---|---|
| 論文名稱: |
非水溶液之極性液滴在磺基甜菜鹼基材之特殊行為 Peculiar Wetting Behavior of Nonaqueous Polar Liquids on Sulfobetaine Silane Surfaces |
| 指導教授: |
曹恆光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 潤濕行為 、磺基甜菜鹼矽烷 |
| 外文關鍵詞: | Wetting behavior, Sulfobetaine silane |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將磺基甜菜鹼矽烷(Sulfobetaine silane, SBSi)經水解縮合修飾至玻璃上而成一雙離子型表面,已知水及正十六烷(Hexadecane, HD)之液滴在此高表面能的SBSi基材上會展現自發性擴張行為。本研究討論了低蒸氣壓的極性液體在SBSi基材上之潤濕行為,像是二乙二醇單丁醚(Butyl diglycol, BDG)、二甲基甲醯胺(Dimethylformamide, DMF)、二甲基亞碸(Dimethyl sulfoxide, DMSO)等。我們依照液滴在SBSi基材上的行為分為三個類型:部分潤濕、完全潤濕、及非典型潤濕行為。BDG液體屬於部分潤濕行為,在基材上呈現液滴狀且接觸角約為25度。水及HD則屬於完全潤濕之液體,初始接觸角即小於五度,並隨著潤濕面積不斷擴張而持續下降。DMF及DMSO在SBSi基材上也展現自發性擴張行為,但其以不規則形狀向外擴張,且潤濕面積中含有一些孔洞,並能觀察到邊緣較中心厚的情況,造成此類非典型潤濕行為的原因為基材表面水分導致的Marangoni flow。接著將不同性質之液體混合,混合物液滴在SBSi基材仍能表現完全潤濕的擴張行為,並會受部分潤濕液體的影響而縮回,最後,在低遲滯表面的表面張力梯度造成液滴隨機移動。此外,也探討純液滴置於以界面活性劑進行表面物理改質之SBSi基材,進而分析不同濃度變化所造成的液滴行為改變。瞭解液體在固體基材的行為,能應用在工業上的清洗操作及日常生活中的疏水塗層,藉由潤濕現象的理論基礎做為改善應用的依據。
The zwitterionic surface is fabricated by grafting sulfobetaine silane (SBSi) on a glass slide. On the SBSi substrate possessing high surface energy, both water and hexadecane (HD) drops exhibit spontaneous spreading behavior. In this work, the wetting behavior of polar liquids with low volatility, such as butyl diglycol (BDG), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) on SBSi surfaces were studied. Three types of wetting behavior are identified, (i) partial wetting, (ii) total wetting, and (iii) atypical spreading. BDG liquid belongs to the partial wetting type and forms a drop with low contact angle about 25°. The water and HD drops continuously spreads with circular wetting area, classified as the total wetting type. Although the DMF drop spreads spontaneously on SBSi surfaces, its shape is highly irregular. In addition, the ridge near the rim is developed and dry patches are created by the non-uniform advancement of contact lines. This atypical total wetting behavior is possibly driven by the Marangoni flow. After mixing the liquids of different types, the droplets of the mixture still exhibit spontaneous spreading behavior on the SBSi substrate, and retract under the influence of partially wetting liquids. Finally, on the hysteresis-free SBSi surface random motion of droplets was observed due to surface tension gradients. In addition, intriguing wetting phenomena was observed for pure liquid drops placed on surfactant contaminated SBSi surfaces. Understanding the behavior of liquids on solid substrates can be applied in industrial cleaning operations and hydrophobic coatings in everyday life, and the theoretical basis for wetting phenomena is used as a foundation for improving applications.
[1] W. Barthlott and C. Neinhuis, “ Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces ”, Planta, 202, 1–8 (1997).
[2] R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama and G. M. Whitesides, “ Zwitterionic SAMs That Resist Nonspecific Adsorption of Protein from Aqueous Buffer ”, Langmuir, 17, 2841-2850 (2001).
[3] R. S. Kane, P. Deschatelets, and G. M. Whitesides, “ Kosmotropes form the Basis of Protein-Resistant Surfaces ” Langmuir, 19, 2388-2391 (2003).
[4] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe and N. Nakabayashi, “ Hemocompatibility of Human Whole-Blood on Polymers with a Phospholipid Polar Group and its Mechanism ”, Journal of Biomedical Materials Research, 26, 1543-1552 (1992).
[5] M.-C. Sin., S.-H., Chen, Y. Chang., Hemocompatibility of zwitterionic interfaces and membranes, Polymer Journal, 46, 436 (2014).
[6] D. J. Miller, S. Kasemset, L. Wang, D. R. Paul and B.D. Freeman, “ Constant Flux Crossflow Filtration Evaluation of Surface-Modified Fouling-Resistant Membranes ” Journal of Membrane Science, 452, 171−183 (2014).
[7] J. P. Nicot and I. J. Duncan, “ Common Attributes of Hydraulically Fractured Oil and Gas Production and CO2 Geological Sequestration”Greenhouse Gases: Science and Technology, 2, 352−368 (2012).
[8] Adam, N.K., Use of the Term ‘Young's Equation’ for Contact Angles. Journal of Nature and Science, 1957. 180(4590): p. 809-810.
[9] Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research, 1936. 28(8): p. 988-994.
[10] Cassie, A.B.D. and S. Baxter, Cassie Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
[11] Joanny, J.F. and P.G. de Gennes, A model for contact angle hysteresis. The Journal of Chemical Physics, 1984. 81(1): p. 552-562.
[12] Yamada, S. and J. Israelachvili, Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. Journal of Physical Chemistry B, 1998. 102(1): p. 234-244.
[13] Kheshgi, H.S. and L.E. Scriven, Dewetting - Nucleation and Growth of Dry Regions. Chemical Engineering Science, 1991. 46(2): p. 519-526.
[14] Vossen, J.L., The preparation of substrates for film deposition using glow discharge techniques. Journal of Physics E : Scientific Instruments, 1979. 12: p. 159-167.
[15] Muller, P., G. Sudre, and O. Theodoly, Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes. Langmuir, 2008. 24(17): p. 95419550.
[16] MacCallum, N., et al., Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science & Engineering, 2015. 1(1): p. 43-51.
[17] Tanner, L.H., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D : Applied Physics, 1979. 12: p. 1473-1484.
[18] Fowkes, F.M., Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. journal of physical Chemistry 1962. 66: p. 382.
[19] Suzuk, T. and Y. Yamada, Dispersion and Polar Component of Specific Surface Free Energy of NaCl(100), KCl(100), and KBr(100) Single Crystal Surfaces. Journal of Crystallization Process and Technology, 2015. 05(03): p. 43-47.
[20] S. B. Yeh, C. S. Chen, W. Y. Chen, and C. J. Huang, “ Modification of Silicone Elastomer with Zwitterionic Silane for Durable Antifouling Properties ”, Langmuir, 30,11386–11393 (2014).
[21] K. T. Huang, S. B. Yeh, and C. J. Huang, “ Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation ”, ACS Applied Materials & Interfaces, 7, 21021–21029 (2015).
[22] Singh, V., Wu, C. J., Sheng, Y. J., & Tsao, H. K. (2017). Self-propulsion and shape restoration of aqueous drops on sulfobetaine silane surfaces. Langmuir, 33(24), 6182-6191.
[23] Scriven, L. E., & Sternling, C. V. (1960). The marangoni effects. Nature, 187(4733), 186.
[24] Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, Dewetting behavior of aqueous cationic surfactant solutions on liquid films. Langmuir, 2004. 20(18): p. 7575-7582.
[25] Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, The spreading of surfactant solutions on thin liquid films. Advances in Colloid and Interface Science, 2003. 106: p. 183-236.
[26] Stoebe, T., et al., Enhanced spreading of aqueous films containing ionic surfactants on solid substrates. Langmuir, 1997. 13(26): p. 7276-7281.
[27] Wu, C.-J., et al., Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine. RSC Adv., 2016. 6(30): p. 2482724834.
[28] Wang, Z.Y. (2017) Exotic wetting behavior of surfactant drops on SBSi. Department of Chemical and Material Engineering. National Central University.