| 研究生: |
簡維佑 WEI-YU CHIEN |
|---|---|
| 論文名稱: |
以 Multi-Dimensional UPEMD 進行影像分解及處理 Application of Multi-Dimensional UPEMD in Image Decomposition and Analysis |
| 指導教授: |
王淵弘
Yung-Hung Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | MEEMD 、均勻相位經驗模態分解 、影像分解 、多維總體經驗模態分解 |
| 外文關鍵詞: | MEEMD, UPEMD, computational complexity, image decomposition |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種基於多維均勻相位經驗模態分解(Multi-Dimensional Uniform Phase Empirical Mode Decomposition, Multi-Dimensional UPEMD)的影像分解方法,作為傳統多維總體經驗模態分解(MEEMD)的改良。該方法將 MEEMD 中的 EEMD 分解過程替換為 Uniform Phase EMD,透過加入具均勻相位分佈的窄頻正弦波進行相位遮罩,取代隨機白噪音擾動,提升分解影像穩定性,有效抑制模態混合與模態分裂現象。
Multi-Dimensional UPEMD 的一大優勢是可大幅減少演算法所需的實現次數。MEEMD 通常需超過 100 次實現,Multi-Dimensional UPEMD 僅需 4 至 8 次均勻相位實現即可達到相同甚至更佳的分解品質。理論分析指出,其計算成本由原本與實現數(n_e)成正比,降低為與相位數(nₚ)成正比,大幅提升運算效率。
為驗證方法效能,本文針對經典影像Lena、合成影像(加入均勻雜訊之二維正弦波)、MRI 醫學影像與小女孩影像進行分解實驗與比較。結果顯示,Multi-Dimensional UPEMD 能有效保留邊界與影像紋理,同時抑制雜訊,並在紋理對比表現上優於 MEEMD。此外,其平均運算時間顯著縮短,提升計算效率。
This study proposes an image decomposition method based on Multi-Dimensional Uniform Phase Empirical Mode Decomposition (Multi-Dimensional UPEMD), as an improvement to the conventional Multi-Dimensional Ensemble Empirical Mode Decomposition (MEEMD). The proposed approach replaces the EEMD component in MEEMD with Uniform Phase EMD, where narrowband sine waves with uniformly distributed phases are employed as deterministic perturbations. This substitution stabilizes the decomposition process and effectively mitigates issues such as mode mixing and mode splitting.
A key advantage of Multi-Dimensional UPEMD is its substantial reduction in the number of required realizations. While MEEMD typically demands over 100 realizations to achieve acceptable decomposition quality, Multi-Dimensional UPEMD achieves comparable or even superior results using only 4 to 32 uniform-phase realizations. Theoretical analysis shows that the computational cost is reduced from being proportional to the number of realizations (n_e) to being proportional to the number of phases (n_p), significantly improving computational efficiency.
To evaluate the performance of the proposed method, experiments were conducted on a variety of images, including the standard Lena image, synthetic images (2D sine waves with uniform noise), MRI medical images, and a real-world image of a young girl. Experimental results demonstrate that Multi-Dimensional UPEMD preserves edge structures and fine textures more effectively while suppressing noise, and it outperforms MEEMD in terms of texture contrast. Moreover, it achieves a notable reduction in average computation time, confirming its practical efficiency.
[1] Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung and Henry H. Liu. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454.1971 (1998): 903-995.
[2] Lee, W. T., "Tridiagonal matrices: Thomas algorithm, " MS6021, Scientific Computation, University of Limerick, 2011.
[3] Wu, Zhaohua, and Norden E. Huang. "Ensemble empirical mode decomposition: a noise-assisted data analysis method." Advances in adaptive data analysis 1.01 (2009): 1-41.
[4] Wang Yung-Hung, Kun Hu, and Men-Tzung Lo. "Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches, " IEEE Access, vol. 6, pp. 34819-34833, 2018.
[5] Reddy, B. Srinivasa, and Biswanath N. Chatterji. "An FFT-based technique for translation, rotation, and scale-invariant image registration." IEEE transactions on image processing 5.8 (1996): 1266-1271.
[6] Xiao, Tan, Shao-hai Hu, and Yang Xiao. "2-D DFT-DWT application to multidimensional signal processing." 2006 8th international Conference on Signal Processing. vol. 2. IEEE, 2006.
[7] Wu Zhaohua, Norden E. Huang, and Xianyao Chen. "The multi-dimensional ensemble empirical mode decomposition method." Advances in Adaptive Data Analysis 1.03 (2009): 339-372.
[8] Wu Zhaohua, Jiaxin Feng, Fangli Qiao and Zhe-Min Tan. "Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374.2065 (2016): 20150197.
[9] Ke Wang, Pengfeng Xiao, Xuezhi Feng, Guiping Wu. "Image feature detection from phase congruency based on two-dimensional Hilbert transform." Pattern Recognition Letters 32.15 (2011): 2015-2024.
[10] N. E. Huang, Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, Karin Blank., "On instantaneous frequency," Adv. Adapt. Data Anal., vol. 1, pp. 177–229, 2009.
[11] Huang, Norden Eh. Hilbert-Huang transform and its applications. vol. 16. World scientific, 2014.
[12] Ioannidis, Konstantinos, and Ioannis Andreadis. "A digital image stabilization method based on the Hilbert–Huang transform." IEEE Transactions on Instrumentation and Measurement 61.9 (2012): 2446-2457.
[13] Kasban, Hany, and Sabry Nassar. "An efficient approach for forgery detection in digital images using Hilbert–Huang transform." Applied Soft Computing 97 (2020): 106728.
[14] M. T. Lo, Vera Novak, C.-K. Peng, Yanhui Liu, Kun Hu., “Nonlinear phase interaction between nonstationary signals: A comparison study of methods based on Hilbert-Huang and Fourier transforms,” Phys. Rev. E, vol. 79, 061924, 2009.
[15] N. E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung and Henry H. Liu., "The Empirical Mode Decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, vol. 454, pp. 903–995, 1998.
[16] Nunes, Jean Claude, O. Niang, Y. Bouaoune, E. Delechelle, and Ph. Bunel. "Bidimensional empirical mode decomposition modified for texture analysis." Scandinavian conference on image analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
[17] Nunes, Jean Claude, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel. "Image analysis by bidimensional empirical mode decomposition." Image and vision computing 21.12 (2003): 1019-1026.
[18] Nunes, Jean Claude, Steve Guyot, and Eric Deléchelle. "Texture analysis based on local analysis of the bidimensional empirical mode decomposition." Machine Vision and applications 16 (2005): 177-188.
[19] Lin, L., and J. Hongbing, "Signal feature extraction based on an improved EMD method, " Measurement, vol. 42, no. 5, pp. 796-803, 2009.
[20] Price, Sarah, and Elise C. Fear. "Detecting Multipath Signals using the Hilbert-Huang Transform in Microwave Breast Imaging." 2024 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). IEEE, 2024.
[21] Chatlani, N., and Soraghan, J. J., "EMD-based filtering (EMDF) of low-frequency noise for speech enhancement, " IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 4, pp. 1158-1166, 2011.
[22] Colominas, Marcelo A., Gastón Schlotthauer, and María E. Torres, "Improved complete ensemble EMD: A suitable tool for biomedical signal processing, " Biomedical Signal Processing and Control, vol. 14, pp. 19-29, 2014.
[23] Zhang, Tao, Yajuan Zhang, Hao Sun, Haoran Shan. "Parkinson disease detection using energy direction features based on EMD from voice signal." Biocybernetics and Biomedical Engineering 41.1 (2021): 127-141.
[24] Jin, Haoyu, Ruida Zhong, Moyang Liu, Changxin Ye, Xiaohong Chen. "Using EEMD mode decomposition in combination with machine learning models to improve the accuracy of monthly sea level predictions in the coastal area of China." Dynamics of atmospheres and oceans 102 (2023): 101370.
[25] Singh, Gurpreet, Gagandeep Kaur, and Vineet Kumar. "ECG denoising using adaptive selection of IMFs through EMD and EEMD." 2014 International Conference on Data Science & Engineering (ICDSE). IEEE, 2014.
[26] Dai, Wu Jiao, Xiaoli Ding, Jian Jun Zhu, Yong Qi Chen, Zhi Wei Li. "EMD filter method and its application in GPS multipath." Acta Geodaetica et Cartographica Sinica 35.4 (2006): 321-327.
[27] Khatri Archit, Rishabh Jain, Hariom Vashista, Nityam Mittal, Priya Ranjan, Rajiv Janardhanan. "Pneumonia identification in chest X-ray images using EMD." Trends in Communication, Cloud, and Big Data: Proceedings of 3rd National Conference on CCB, 2018. Springer Singapore, 2020
[28] Tran Thi-Thao, Van-Truong Pham, Chen Lin, Hui-Wen Yang, Yung-Hung Wang, Kuo-Kai Shyu, Wen-Yih Issac Tseng, Mao-Yuan Marine Su, Lian-Yu Lin, Men-Tzung Lo. "Empirical mode decomposition and monogenic signal-based approach for quantification of myocardial infarction from mr images." IEEE journal of biomedical and health informatics 23.2 (2018): 731-743.
[29] Wang, Yung-Hung, Chien-Hung Yeh, Hsu-Wen Vincent Young, Kun Hu, Men-Tzung Lo. "On the computational complexity of the empirical mode decomposition algorithm." Physica A: Statistical Mechanics and its Applications, vol. 400, pp. 159-167, 2014.
[30] Anbarjafari, Gholamreza, and Hasan Demirel. "Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image." ETRI journal 32.3 (2010): 390-394.
[31] Linderhed, Anna. "Image empirical mode decomposition: A new tool for image processing." Advances in Adaptive Data Analysis 1.02 (2009): 265-294.
[32] Skarbnik, Nikolay, Yehoshua Y. Zeevi, and Chen Sagiv. The importance of phase in image processing. Technion-Israel Institute of Technology, Faculty of Electrical Engineering, 2009.
[33] Yadan, Zhang, Wu Jian, Li Yifu, Li Haiying, Lin Jie, Li Hairui. "Solving the inverse problem based on UPEMD for electrocardiographic imaging." Biomedical Signal Processing and Control 76 (2022): 103665.
[34] Jin Luyao, Chuting Zhang, Wenbin Shi, Chien-Hung Yeh. "A Novel Framework in Quantifying Oscillatory Coupling to Gait Disturbance in Parkinson's Disease." 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022.
[35] Geddes, Justen, Jesper Mehlsen, and Mette S. Olufsen. "Characterization of blood pressure and heart rate oscillations of POTS patients via uniform phase empirical mode decomposition." IEEE Transactions on Biomedical Engineering 67.11 (2020): 3016-3025.