跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃亭堯
Ting-Yao Huang
論文名稱: 應用傳輸線變壓器與功率結合技術於全積體化功率放大器之研究
The Study on Transmission Line Transformer andPower-Combining Techniques for Fully Integrated PowerAmplifier Design
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 功率放大器變壓器功率結合
外文關鍵詞: power combining, transformers, power amplifier
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文架構以實現不同的功率結合器,並達到高傳輸效率,與阻抗轉換為目
    標,共分為兩大部分: 功率結合變壓器與傳輸線形態功率結合變壓器。第一部分
    分別設計兩個功率放大器搭配功率結合變壓器: “利用並聯功率結合變壓器之
    CMOS 功率放大器”與“差動功率結合變壓器之E 類功率放大器”,並實現在
    tsmcTM 0.18 μm CMOS 製程上,應用於2.4 GHz 頻段。第一設計為利用兩組AB
    類差動對,搭配並聯型態的變壓器來結合四組放大器的輸出功率;第二設計為利
    用一對E 類差動放大器,搭配變壓器來結合兩組放大器的輸出功率。第二部分
    為利用傳輸線型態變壓器做功率結合,設計“應用傳輸線變壓器功率結合技術之
    K 頻帶功率放大器”,採用AB 類功率放大器實現於WINTM 0.15 μm pHEMT 製程
    上,應用於K 頻帶。
    設計結果量測如下: 利用並聯功率結合變壓器之功率放大器,增益為19.8
    dB,輸入反射損失約為10.2 dB,輸出反射損失為5.3 dB,1-dB 功率增益壓縮點
    輸出功率約為20.9 dBm,飽和輸出功率為26.7 dBm,最高功率增進效益為24.8
    %,晶片面積為1.4 × 1.37 mm2 ;差動功率結合變壓器之E 類功率放大器,增益
    為12.98 dB, 1-dB 功率增益壓縮點輸出功率為23.3 dBm,飽和輸出功率約為
    25.9 dBm,最高功率增進效益為29.9 %,晶片面積為1.33 × 1.11 mm2
    ;應用傳輸
    線變壓器功率結合技術之K 頻帶功率放大器增益為10.2 dB,輸入反射損失約為
    18.7 dB,輸出反射損失為11.48 dB,1-dB 功率增益壓縮點輸出功率約為22 dBm,
    此時的功率增進效益為23.4 %,晶片面積為1.5 × 1 mm2


    The study of this thesis is to design different power combiners for power amplifier
    application, which can be used to achieve the high transmission efficiency and
    impedance transformation. The content of this thesis is divided into two parts. They
    are transformer and transmission line transformer (TLT) for power combining
    respectively. In the first part, we have designed two power amplifiers with power
    combining transformers. They are “A Parallel Power Combining Transformer for
    CMOS Power Amplifier” and “Differential Class E Power Amplifier Using Power
    Combining Transformer” respectively. The amplifiers were designed and
    implemented in tsmcTM 0.18 μm CMOS process for 2.4 GHz application. The first
    design is used of two class AB differential pairs, which were combined the output
    power from four groups of amplifiers by parallel power combining transformer. And
    the second design is used a class E differential pair, which were combined the output
    power from the two class E amplifiers by the power combining transformer. The
    second part of the thesis is related to the use of TLT for power combining in power
    amplifier design. A K-band class AB differential power amplifier with TLT was
    implemented in WINTM 0.15 μm pHEMT process.
    The measured results of these designs are summarized as follow. The CMOS
    power amplifier with parallel power combining transformer achieves a power gain of
    19.8 dB, and input and output return losses are 10.2 dB and 5.3 dB respectively. The
    output 1-dB gain compression point (P1dB) is 20.9 dBm, and the saturated output
    III
    power is 26.7 dBm with the maximum power added efficiency of 24.8%. The chip
    size is 1.4 × 1.37 mm2. The differential class E power amplifier with power
    combining transformer achieves apower gain of 12.98 dB. The output 1-dB gain
    compression point (P1dB) is 23.3 dBm, and the saturated output power is 25.9 dBm,
    with the maximum power added efficiency of 29.9%. The chip size is 1.33 × 1.11
    mm2. The K-band Power Amplifier with TLT power combining network achieves a
    power gain of 10.2 dB, and input and output return losses are 18.7 dB and 11.48 dB
    respectively. The output 1-dB gain compression point (P1dB) is 22 dBm with the
    power added efficiency of 23.4%. The chip size is 1.5 × 1 mm2.

    摘要................................................................................................................................ I Abstract .......................................................................................................................... II 誌 謝.......................................................................................................................... IV 目 錄.......................................................................................................................... VI 圖目錄........................................................................................................................ VIII 表目錄.......................................................................................................................... XII 第一章 緒論.................................................................................................................. 1 1-1 研究動機............................................................................................................. 1 1-2 研究成果............................................................................................................. 1 1-3 章節簡介............................................................................................................. 2 第二章 功率結合技術.................................................................................................. 3 2-1 功率放大器簡介................................................................................................. 3 2-2 功率結合簡介..................................................................................................... 4 第三章 利用功率結合變壓器之CMOS 功率放大器研製 ........................................ 7 3-1 CMOS 功率結合變壓器簡介 ............................................................................. 7 3-2 利用並聯功率結合變壓器之CMOS 功率放大器研製 .................................. 11 3-2.1 並聯功率結合變壓器設計 ........................................................................ 11 3-2.3 利用並聯功率結合變壓器之CMOS 功率放大器模擬量測結果 .......... 16 3-2.4 比較與討論 ................................................................................................ 22 3-3 差動功率結合變壓器之E 類功率放大器研製 ............................................... 24 3-3.1 E 類功率放大器簡介 ................................................................................. 24 3-3.2 功率結合變壓器設計 ................................................................................. 28 3-3.3 差動功率結合變壓器之E 類功率放大器電路設計 ................................ 31 3-3.4 差動功率結合變壓器之E 類功率放大器模擬與量測結果 .................... 34 VII 3-3.5 比較與討論 ................................................................................................. 37 第四章 利用功率結合傳輸線變壓器之功率放大器研製........................................ 39 4-1 傳輸線變壓器簡介........................................................................................... 39 4-2 應用傳輸線變壓器功率結合技術之K 頻帶功率放大器研製 ...................... 42 4-2.1 功率結合傳輸線變壓器設計 ..................................................................... 42 4-2.3 應用傳輸線變壓器功率結合技術之K 頻帶功率放大器模擬與量測結果 .............................................................................................................................. 47 4-2.4 比較與討論 ................................................................................................. 52 第五章 結論與未來研究方向.................................................................................... 54 5-1 結論................................................................................................................... 54 5-2 未來研究方向................................................................................................... 55 參考文獻...................................................................................................................... 56

    [1] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS
    power amplifier design using the distributed active-transformer architecture,”
    IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
    [2] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, "Distributed active
    transformer-a new power-combining and impedance-transformation technique,"
    Microwave Theory and Techniques, IEEE Transactions on , vol.50, no.1,
    pp.316-331, Jan 2002
    [3] P. Reynaert, "A 2.45-GHz 0.13-μm CMOS PA With Parallel Amplification,"
    Solid-State Circuits, IEEE Journal of , vol.42, no.3, pp.551-562, March 2007
    [4] Y. Yoshihara, R. Fujimoto, N. Ono, and T. Mitomo, H. Hoshino, and M. Hamada,
    "A 60-GHz CMOS power amplifier with Marchand balun-based parallel power
    combiner," Solid-State Circuits Conference, 2008. A-SSCC ''08. IEEE Asian , vol.,
    no., pp.121-124, 3-5 Nov. 2008
    [5] J.R. Long, "Monolithic transformers for silicon RF IC design," Solid-State
    Circuits, IEEE Journal of , vol.35, no.9, pp.1368-1382, Sep 2000
    [6] K.H. An, O. Lee, H. Kim; D.H. Lee, J. Han, K.S. Yang, Y. Kim, J.J. Chang, W.
    Woo, C.H. Lee, H. Kim, and J. Laskar, "Power-Combining Transformer
    Techniques for Fully-Integrated CMOS Power Amplifiers," Solid-State Circuits,
    IEEE Journal of , vol.43, no.5, pp.1064-1075, May 2008
    [7] D. Chowdhury, C.D. Hull, O.B. Degani, Y. Wang, and A.M. Niknejad, "A Fully
    Integrated Dual-Mode Highly Linear 2.4 GHz CMOS Power Amplifier for 4G
    WiMax Applications," Solid-State Circuits, IEEE Journal of , vol.44, no.12,
    pp.3393-3402, Dec. 2009
    57
    [8] T. Sowlati, and D.M.W. Leenaerts, "A 2.4-GHz 0.18-μm CMOS self-biased
    cascode power amplifier," Solid-State Circuits, IEEE Journal of , vol.38, no.8, pp.
    1318- 1324, Aug. 2003
    [9] A.V. Grebennikov, and H. Jaeger, "Class E with parallel circuit - a new challenge
    for high-efficiency RF and microwave power amplifiers," Microwave Symposium
    Digest, 2002 IEEE MTT-S International , vol.3, no., pp.1627-1630, 2002
    [10] J. Sevick, “A Simplified Analysis of the Broadband Transmission Line
    Transformer,” High Frequency Electronics, vol. 3, Feb. 2004, 48-53.
    [11] G. Guanella, “High-Frequency Matching Transformer,” U.S. Patent 2470307,
    May 1949.
    [12] C. L. Ruthroff, “Some Broad-Band Transformers,” Proc. IRE, vol. 47, Aug.
    1959, 1337-1342.
    [13] K. Jongchan, A. Hajimiri, and K. Bumman, "A single-chip linear CMOS power
    amplifier for 2.4 GHz WLAN," Solid-State Circuits Conference, 2006. ISSCC
    2006. Digest of Technical Papers. IEEE International , vol., no., pp.761-769, 6-9
    Feb. 2006
    [14] P. Haldi, D. Chowdhury, P. Reynaert, L. Gang, and A.M. Niknejad, "A 5.8 GHz 1
    V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner
    in Standard 90 nm CMOS," Solid-State Circuits, IEEE Journal of , vol.43, no.5,
    pp.1054-1063, May 2008
    [15] L. Gang, P. Haldi, L.K. Tsu-Jae, and A.M. Niknejad, "Fully Integrated CMOS
    Power Amplifier With Efficiency Enhancement at Power Back-Off," Solid-State
    Circuits, IEEE Journal of , vol.43, no.3, pp.600-609, March 2008
    [16] H.Y. Liao, M.W. Pan, and H.K. Chiou, "Fully-integrated CMOS class-E power
    amplifier using broadband and low-loss 1:4 transmission-line transformer,"
    Electronics Letters , vol.46, no.22, pp.1490-1491, October 28 2010
    58
    [17] V. Saari, P. Juurakko, J. Ryynanen, and K. Halonen, "Integrated 2.4 GHz class-E
    CMOS power amplifier," Radio Frequency integrated Circuits (RFIC)
    Symposium, 2005. Digest of Papers. 2005 IEEE , vol., no., pp. 645- 648, 12-14
    June 2005
    [18] K.H. An, O. Lee, H. Kim, D.H. Lee, J. Han, K.S. Yang, Y. Kim, J.J. Chang, W.
    Woo, C.H. Lee, H. Kim, and J. Laskar, "Power-Combining Transformer
    Techniques for Fully-Integrated CMOS Power Amplifiers," Solid-State Circuits,
    IEEE Journal of , vol.43, no.5, pp.1064-1075, May 2008
    [19] A. Bessemoulin, M.G. McCulloch, A. Alexander, D. McCann, S.J. Mahon, and
    J.T. Harvey, "Compact K-band Watt-level GaAs PHEMT Power Amplifier
    MMIC with integrated ESD protection," Microwave Conference, 2006. 36th
    European , vol., no., pp.1743-1746, 10-15 Sept. 2006
    [20] A. Bessemoulin, J. Dishong, G. Clark, D. White, P. Quentin, H. Thomas, and D.
    Geiger, "1 watt broad Ka-band ultra small high power amplifier MMICs using
    0.25-μm GaAs PHEMTs," Gallium Arsenide Integrated Circuit (GaAs IC)
    Symposium, 2002. 24th Annual Technical Digest , vol., no., pp. 40- 43, 2002
    [21] B. Koo, C. Park; K.A. Lee, J.H. Chun, and S. Hong, "A 28-dBm pHEMT Power
    Amplifier Using Voltage Combiner for K-Band Applications," Microwave
    Conference, 2008.
    [22] B.H. Ku, S.H Baek; and S. Hong, "A Wideband Transformer-Coupled CMOS
    Power Amplifier for $X$-Band Multifunction Chips," Microwave Theory and
    Techniques, IEEE Transactions on , vol.59, no.6, pp.1599-1609, June 2011
    [23] H.K. Chiou, H.Y. Liao, C.C. Chen, and S.M. Wang, “A 2.6-GHz fully integrated
    CMOS power amplifier using power combining Transformer”, Microw. Opt.
    Technol. Lett., 2010, 52, (2),pp. 299–302
    [24] A.M. Niknejad, M. Bohsali, E. Adabi, and B. Heydari, "Integrated circuit
    59
    transmission-line transformer power combiner for millimetre-wave
    applications," Electronics Letters , vol.43, no.5, pp.47-48, March 1 2007
    [25] J.X. Liu, C.Y. Hsu, H.R. Chuang, and C.Y. Chen, "A 60-GHz Millimeter-wave
    CMOS Marchand Balun," Radio Frequency Integrated Circuits (RFIC)
    Symposium, 2007 IEEE , vol., no., pp.445-448, 3-5 June 2007
    [26] H. J. Wei, C. Meng, P. Y. Wu, and K. C. Tsung, "K-band CMOS sub-harmonic
    resistive mixer with a miniature Marchand balun on lossy silicon
    Substrate," Microwave and Wireless Components Letters, IEEE , vol.18, no.1,
    pp.40-42, Jan. 2008
    [27] Y.N Jen, J.H Tsai, T.W Huang, and H. Wang, "Design and Analysis of a
    55–71-GHz Compact and Broadband Distributed Active Transformer Power
    Amplifier in 90-nm CMOS Process,"Microwave Theory and Techniques, IEEE
    Transactions on , vol.57, no.7, pp.1637-1646, July 2009
    [28] C.C Yen, and H.R Chuang, "A 0.25-μm 20-dBm 2.4-GHz CMOS power
    amplifier with an integrated diode linearizer," Microwave and Wireless
    Components Letters, IEEE , vol.13, no.2, pp. 45- 47, Feb 2003
    [29] G. Boeck, "Modeling and design of multilayer transmission line transformers and
    baluns," Microwave and Optoelectronics, 2005 SBMO/IEEE MTT-S
    International Conference on , vol., no., pp. 230- 232, 25-28 July 2005
    [30] J. Sevick, Transmission Line Transformers, Norcross: Noble Publishing, 2001.
    [31] C. Park, D.H. Lee, J. Han, and S. Hong; , "Tournament-Shaped Magnetically
    Coupled Power-Combiner Architecture for RF CMOS Power
    Amplifier," Microwave Theory and Techniques, IEEE Transactions on , vol.55,
    no.10, pp.2034-2042, Oct. 2007
    [32] O. Degani, F. Cossoy, S. Shahaf, V. Kravtsov, D. Chowdhury, C.D. Hull, C.
    Emanuel, and S. Ravid, "A 32dBm power amplifier for WiMAX applications in
    60
    90nm CMOS," Microwaves, Communications, Antennas and Electronics Systems,
    2009. COMCAS 2009. IEEE International Conference on , vol., no., pp.1-5, 9-11
    Nov. 2009
    [33] P. Reynaert, and A.M. Niknejad, "Power combining techniques for RF and
    mm-wave CMOS power amplifiers," Solid State Circuits Conference, 2007.
    ESSCIRC 2007. 33rd European , vol., no., pp.272-275, 11-13 Sept. 2007
    [34] K.J Kim, T.H. Lim, and K.H Ahn, "The novel high efficiency on chip
    transformers for the CMOS power amplifier," Integrated Circuits, ISIC ''09.
    Proceedings of the 2009 12th International Symposium on , vol., no., pp.401-404,
    14-16 Dec. 2009
    [35] J. Kim, H. Kim, Y. Yoon, K.H. An, W. Kim, C.H. Lee, K.T. Kornegay, J. Laskar, ,
    "A discrete resizing and concurrent power combining structure for linear CMOS
    power amplifier," Radio Frequency Integrated Circuits Symposium (RFIC), 2010
    IEEE , vol., no., pp.387-390, 23-25 May 2010
    [36] K.H An, O. Lee, H. Kim, D.H. Lee, J. Han, K.S. Yang, Y. Kim, J.J Chang, W.
    Woo, C.H. Lee, H. Kim, and J. Laskar , "Power-Combining Transformer
    Techniques for Fully-Integrated CMOS Power Amplifiers," Solid-State Circuits,
    IEEE Journal of , vol.43, no.5, pp.1064-1075, May 2008
    [37] H. Gan, “On-chip transformer modeling, characterization, and applications in
    power and low noise amplifiers,” Ph.D. dissertation, Dept. Elect. Eng., Stanford
    Univ., Stanford, CA, Mar. 2006.
    [38] 陳建中,“使用功率結合變壓器功率放大器與反E 類開關式功率放大器研製
    ”, 中央大學,碩士論文, 2009。
    [39] 簡偉仁,“應用於K 頻段之低功耗低相位雜訊壓控振盪器暨Ku 頻段雙模注入
    式除頻器之研製”, 中央大學,碩士論文, 2009。
    [40] 潘孟偉,“全積體整合矽製程E 類功率放大器與Ka 頻段pHEMT 製程功率放
    61
    大器研製”, 中央大學,碩士論文, 2010。
    [41] 吳開文,“使用變壓器結合功率之功率放大器與反F 類功率放大器研製
    ”, 中央大學,碩士論文, 2010。

    QR CODE
    :::