| 研究生: |
潘韋龍 Wei-long Pan |
|---|---|
| 論文名稱: |
Cu含量對Al-12.5Si-1.0Mg合金熱穩定性與磨耗性質之影響 Effect of Cu content on the thermal stability and wear behavior of Al-12.5Si-1.0Mg alloy |
| 指導教授: |
李勝隆
Sheng-long Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | Al-12.5Si-1.0Mg合金 、磨耗性 、Cu含量 、Al2Cu相 、熱穩定性 |
| 外文關鍵詞: | Al-12.5Si-1.0Mg alloys, Cu concent, Thermal stability, Al2Cu phase, Wear behavior |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在探討含Cu之Al-12.5Si-1.0Mg合金之高溫(300℃)熱穩定性與耐磨性。結果顯示,低Cu(2.55wt.%)合金之鑄態微結構包括鋁矽共晶相、Al2Cu相(θ)、Al5Cu2Mg8Si6相(λ)及Mg2Si相(β),而高Cu(4.53wt.%)合金之鑄態微結構除了未觀察到Mg2Si相(β)外,其餘組成與低Cu合金相似。合金經固溶處理後,高Cu合金鋁基地中的Cu原子固溶量比低Cu合金高,時效處理後,析出大量Al2Cu相(θ)、Al5Cu2Mg8Si6相(λ),提升合金之硬度。高Cu合金於鑄態時,鋁基地中晶出大量Al2Cu相與Al5Cu2Mg8Si6相,而此晶出相經300℃×10hr處理後仍然存在於鋁基地中,致使合金硬度下降幅度減少(約HRF89→HRF75),熱穩定性良好。而時效處理後之合金雖有析出相提升合金硬度,但析出相經300℃×10hr後會產生明顯過時效現象,致使合金硬度大幅下降(約HRF104→HRF57),熱穩定性不如鑄態合金。在低荷重(10N)進行磨耗時,含高低Cu之鑄態與時效處理後之合金,經300℃×100hr處理後之磨耗量相似;但在高荷重(40N)時,合金耐磨性之趨勢與硬度相符,鑄態高Cu合金經300℃×100hr處理後硬度最高,具有最佳耐磨性。
Effect of Cu content on microstructure and mechanical properties of Al-12.5Si-1.0Mg alloys were investigated by adding two kinds of Cu contents (2.55wt.%, 4.53wt.%) into the alloys. The results indicate that microstructural constituents of low-Cu alloys consist of eutectic Al-Si, Al2Cu, Al5Cu2Mg8Si6 and Mg2Si coexist at the Al-matrix. Increasing the Cu content will reduce Mg2Si but increase Al2Cu and Al5Cu2Mg8Si6. Effect of soluting atoms and precipitation hardening increases with the increasing of Cu content, this leads to higher hardness in high-Cu alloys. But the precipitation phase change from coherence or semi-coherence to non- coherence, and the hardness of alloys will decline. The foundry high-Cu alloys after 300℃×100hr treatment contains much intermetallic compounds and shows the best thermal stability. After wear test with 10N load, each alloy shows the same wear rate. When load is 40N, the foundry high-Cu alloy after 300℃×100hr treatment shows the lowest wear rate.
[1]. J. L. Jorstad,“Eutectic Al-Si Casting Alloys 25 Years, What’s Next” AFS Transaction, V104(1996), pp. 669-671
[2]. J. E. Gruzleski, B. M. Closset,”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS(1990), pp. 13-14
[3]. 材料手冊II、非鐵金屬材料,中國材料科學學會(1983), pp. 20
[4]. J. E. Hatch,“Aluminum Properties and Physical Metallurgy”, ASM, metal park, Ohio(1984), pp. 346-347
[5]. J. E. Gruzleski and B. M. Closset ,” The Treatment of Liquid Aluminum - Silicon Alloys”, AFS(1990), pp. 25-28
[6]. J.E.Gruzleski and B.M. Closset ,”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS(1990), pp. 30-50
[7]. 吳聲君, 譚安宏, 李勝隆, 林於隆,“微量銻對含鍶A356合金之微結構及機械性質的影響”, 鑄工季刊(1996), 91期
[8]. S. Z. Lu and A. Hellawell , “The Mechanism of Silicon Modification in Aluminum-Silicon Alloys : Impurity Induced Twinning “, Metall. Tarns. A. , vol.18A(1987), pp. 1721-1733
[9]. K. Nogita, J. Drennan and A. K. Dahle, “Evaluation of Silicon Twinning in Hypo-Eutectic Al-Si Alloys”, Mater Trans, V44(2003), pp. 625-628
[10]. R. W. Bruner, “Metallurgy of Die Casting Alloys” , SDCE. Detroit. MI(1976), pp. 25
[11]. F. H. Samuel, A. M. Samuel, “Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings”, Journal of Materials Science, V30(1995), pp. 2531-2510
[12]. 王建義,“鑄造用鋁合金”, 鑄工季刊(1994), 81期, pp. 38-44
[13]. J. L. Jorstad, “Hypereutectic Al-Si Casting Alloys: 25 Years,What’s Next” AFS Transaction,V104(1996), pp. 669-671
[14]. Ned Tenekedjiev, Hasim Mulazimoglu, Bernard Closset,”Microstructures and Thermal Analysis of Strontium-Treated Al-Si alloys ”, American Foundrymen’s Society, Inc.
[15]. P. N. Crepeau, ”Effect of Iron in Al-Si Casting Alloys: A Critical Reviw”, AFS Transactions, V103(1995), pp. 361-365
[16]. 林裕煥,“微量Sr與Be對Al-11%Si合金機械性質之影響”,國立中央大學機械工程研究所碩士論文(1996)
[17]. A. M. Samuel, F. H. Samuel ,”Observations on the /formation of β-Al5FeSi Phase in 319 Type Al-Si alloys”, Journal of Materials Science, V31(1996), pp. 5529-5539
[18]. L. Wang ,”Iron-Bearing Compounds in Al-Si Diecasting Alloys : Morphology and Conditions Under Which They Form” , AFS Transactions, V107(1999), pp. 231-238
[19]. F. H. Samuel, P. Quellet, ”Effect of Mg and Sr Additions on the Formation of Intermetallics in Al-6Si-3.5Cu-(0.45)to(0.8)Fe 319-Tpe Alloy”, Metallurgical and Materials Transactions A,V29A(1998), pp. 2871-2884
[20]. Paih-Shiarng Wang, Sheng-Long Lee,Jing-Chie Lin, ”Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys contaioning trace beryllium ”, Journal of Materials Research,V15(2000), pp.2027-2035
[21]. F. H. Samuel, A. M. Samuel, “Decomposition of Fe-Intermetallics in Sr-Modified Cast 6xxx Type Aluminum Alloys for Automotive Skin”, Metallurgical and Materials Transactions A, V32A(2001), pp. 2061-2075
[22]. 廖義吉, “微量Be與非平衡熱處理對319鑄鋁合金性質之影響”, 國立中央大學機械工程研究所碩士論文(1996)
[23]. F. H. Aamuel, A. M. Aamuel , ”Modification of Iron Intermetallics by Magnesium and Strontium in Al-Si Alloys”, Int. J. Cast Metals Res.,V10(1997), pp. 147-157
[24]. G. Wang, X. Bain, W. Wang and J. Zhang,” Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys”, Materials Letters, V57(2003), pp. 4083-4087
[25]. D. J. Chakrabarti, David E. Laughlin, ”Phase relations and precipitation in Al–Mg–Si alloys with Cu additions”, Progress in Materials Science, V49(2004), pp. 389-410
[26]. I. Dutta, C.P. Harper, “Role of Al2O3 Particulate Reinforcements on Precipitation in 2014-Al-Matrix Composites”, Metallurgical and Materials Transactions A, V25A(1994), pp. 1591-1601
[27]. J. Man, Li. Jing and S. G. Jie, ”The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy”, Journal of Alloys and Compounds, V304(2006), pp. 521-526
[28]. J. Crowther , J. Inst. Met., V76(1949), pp. 201-236
[29]. C. H. Caceres, M. B. Djurdjevic, T. J. Stocjwell and J. H. Sokolowski,”The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys”, Scripta Materialia, V40(1999), pp. 631-637
[30]. K.G. Basavakumar, P.G. Mukunda, M. Chakraborty,” Impact toughness in Al–12Si and Al–12Si–3Cu cast alloys—Part 1: Effect of process variables and microstructure”, International Journal of Impact Engineering(2007).
[31]. M. Zeren, ”Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys”, Journal of Materials Processing Technology, V169(2005), pp. 292-298
[32]. Y. J. Li, S. Brusethaug, A. Olsen, ”Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment”, Scripta Materialia, V54(2006), pp. 99-103
[33]. J. E. Hatch,”Aluminum Properties and Physical Metallurgy” , London, Butterwordths and Co., Ltd.(1976), pp. 143-148
[34]. 劉偉隆, 林淳杰, 曾春風, 陳文照, “物理冶金”, 全華科技圖書股份有限公司(1996), pp. 16-10~11
[35]. S. Shivkumar, S.Ricci, Jr. and D.Apelian, ”Influence of Solution Parameters and Simplified Supersaturation Treatments on Tensile Properties of A356 Alloy”, AFS Transaction, V98(1990), pp. 913-922
[36]. H. G. Kang, M. Kida, H.Miyahara, “Age-Hardening Characteristics of Al-Si-Cu-Base Cast Alloys”, AFS Transactions, V107(1999),
pp. 507-515
[37]. M.Gupta, E.J. Lavernia, “Effect of Processing on the Microstructural Variation and Heat-treatment Response of a Hypereutectic Al-Si Alloy”, Journal of Materials Processing Technology, V54(1995), pp. 261-270
[38]. D.Apelian, S.Shivkumar, G.Sigworth, ”Foundmental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Transaction, V97(1989),
pp. 727-742
[39]. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice Hall, 1988, pp.16-18.
[40]. Karl-Heinz ZUM GAHR,“Microstructure and wear of materials”,ELSEVIER Science Publishing Company Inc(1987).
[41]. F. Wang, H. Liu, Y. M, Y. Jin, “Effect of Si content on the dry sliding wear properties of spray-deposited Al–Si alloy”, Materials and Design, V25(2004), pp. 163–166
[42]. D. K. Dwivedi, “Sliding temperature and wear behaviour of cast Al–Si–Mg alloys”, Materials Science and Engineering A, V382(2004), pp. 328–334
[43]. L. Lasa, J. M. Rodriguez-Ibabe, ”Wear behaviour of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad”, Materials Science and Engineering A, V363(2003), pp. 193-202
[44]. 謝孟雄,“Mg、Cu含量對Al-14.5Si-Cu-Mg合金機械性質之影響”,國立中央大學機械工程研究所碩士論文(2004), pp. 11-21
[45]. C. Ravi, C. Wolverton, ” First-principles study of crystal structure and stability of Al–Mg–Si–Cu precipitates”, Acta Materialia, V52(2004), pp. 4213-4227
[46]. R. E. Reed-Hill, R. Abbaschian, ”Physical Metallurgy Principles”, PWS Publishing Company, 3rd ed., pp. 447-449
[47]. 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚,“工程材料科學“,全華書局(1995), pp. 406-411