跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅威丞
Wei-Cheng Lo
論文名稱: 近場電紡織堆疊3D鰭式多孔隙改質PVDF-TrFE壓電奈米感測器應用於智能聲場與步態足壓感測大數據分析
Three-Dimensional Stacked Near-Field Electrospun NanoPorous PVDF-TrFE Nanofibers as Self-Powered Smart Sensing in Acoustic and Gait Big Data Analytics
指導教授: 傅尹坤
Yiin-Kuen Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 近場電紡織技術積層製造智能步態感測深度學習動作辨識生物識別
外文關鍵詞: Near field electrospinning, Additive Manufacturing, Smart mat, Deep learning, Motion recognition, biometric
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究通過近場靜電紡絲描述一種具有多孔隙奈米纖維壓電奈米發電機的新型堆疊結構。3D堆疊的多孔奈米纖維結構增強應力集中效應,因此PVDF-TrFE奈米纖維可以促進更高的電輸出性能。通過近場靜電紡絲設置模仿積層製造,結構簡單且壓電強化的製造工藝能夠將堆疊的多孔隙PVDF-TrFE奈米纖維轉變為高性能傳感器。與原始PVDF-TrFE奈米纖維相比,電壓輸出性能提高2.7倍以上。此外,還開發自供電的步態足壓識別統計系統和個人步態生物特徵識別系統,以提供步態識別和一種新的生物特徵識別技術。通過深度學習BiLSTM模型,個人步態壓電訊號識別率達到86%。此研究將自供電系統的應用領域擴展到智能穿戴設備監控外,也刺激智能醫療行業中大數據分析的發展。
    其二設計多孔隙PVDF-TrFE壓電奈米單層纖維膜收集聲能振動訊號,輕薄平整的PVDF-TrFE纖維膜直寫於柵式柔性印刷電路基板上具有高的性能輸出,高靈敏度的可撓自供電聲能感測器被應用於收集人體聲能振動訊號,智慧聲場感測器結合深度學習模型設計人體動作辨識系統,透過演算法訓練後,收集喉部及口罩之振動訊號足以辨識多種運動型態,此研究為智能人機介面應用提出一種新穎的辨識系統。


    This study describes a new stacked structure with porous nanofiber-based piezoelectric nanogenerator by near field electrospinning. The 3D-stacked porous nanofibers structure enhanced the stress concentration effect such that the PVDF-TrFE nanofibers can promote higher performance in electrical output. By mimicking the additive manufacturing in near field electrospinning (NFES) setup, structurally simple and piezoelectrically effective fabrication is capable of converting stacked porous PVDF-TrFE nanofiber into a high-performance sensor. The electrical voltage output performance is enhanced more than 2.7 times compared with primitive PVDF-TrFE nanofiber. Furthermore, a self-powered foot pressure recognition statistical system and an individual gait biometrics system are developed to provide gait recognition and a new biometrics technology. The personal sequence gait piezoelectric signal recognition rate have achieved to 86% by deep learning BiLSTM model. Furthermore, besides expending the application area of self-powered system to smart wearable device monitoring, this work also stimulates the evolution of big data analytics in intelligent medical industry.
    The second design is a single-layer porous PVDF-TrFE nanofiber film to collect acoustic signals. The thin and flat PVDF-TrFE fiber film is directly written on the grating FPCB with high performance and sensitivity. The self-powered smart acoustic sensing is used to collect human acoustic vibration signals, combined with the deep learning model as the human motion recognition system. The throat and mask vibration signals identify the human motion. This study presents a novel identification system for intelligent human-machine interface applications.

    摘要 VI Abstract VII 致 謝 VIII 目 錄 IX 圖表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 壓電原理 4 2.2 壓電材料 6 2.3 聚偏二氟乙烯PVDF 9 2.4 電紡織技術 11 2.5 奈米發電機 13 2.6 摩擦電效應 14 2.7 機器學習 16 第三章 鰭式多孔隙PVDF-TrFE壓電奈米發電器設計 應用於步態足壓感測大數據分析 20 3.1 導論 20 3.2 實驗方法及步驟 20 3.3 結果與討論 23 3.4 補充資料 42 第四章 多孔隙PVDF-TrFE纖維薄膜壓電奈米感測器設計 應用於智能聲場大數據分析 52 4.1 導論 52 4.2 實驗方法及步驟 52 4.3 結果與討論 54 4.4 補充資料 67 第五章 結論 74 第六章 未來展望 75 參 考 文 獻 79 實 驗 儀 器 83

    [1] K. Dong, X. Peng, & Z. L. Wang, "Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence", Advanced Materials, vol. 32, no. 5, p. 1902549, (2020).
    [2] J. Curie & P. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées", Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, (1880).
    [3] M. Birkholz, "Crystal-field induced dipoles in heteropolar crystals II: Physical significance", Zeitschrift für Physik B Condensed Matter, vol. 96, no. 3, pp. 333-340, (1995).
    [4] J. Curie & P. Curie, "Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées", Compt. Rend, vol. 93, pp. 1137-1140, (1881).
    [5] J. Krautkrämer & H. Krautkrämer, "Ultrasonic testing by determination of material properties," in Ultrasonic Testing of Materials: Springer, 1990, pp. 528-550.
    [6] D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics", Reports on Progress in Physics, vol. 61, no. 9, p. 1267, (1998).
    [7] K. K. Sappati & S. Bhadra, "Piezoelectric polymer and paper substrates: a review", Sensors, vol. 18, no. 11, p. 3605, (2018).
    [8] W. Heywang, K. Lubitz, & W. Wersing, Piezoelectricity: evolution and future of a technology, Springer Science & Business Media, 2008.
    [9] T. Ikeda, Fundamentals of piezoelectricity, Oxford university press, 1996.
    [10] Q. Zhang, V. Bharti, & G. Kavarnos, "Poly (vinylidene fluoride)(PVDF) and its copolymers", Encyclopedia of Smart Materials, (2002).
    [11] K. Omote, H. Ohigashi, & K. Koga, "Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’films of vinylidene fluoride trifluoroethylene copolymer", Journal of applied physics, vol. 81, no. 6, pp. 2760-2769, (1997).
    [12] H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)", Japanese journal of applied physics, vol. 8, no. 7, p. 975, (1969).
    [13] E. Nix & I. Ward, "The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride", Ferroelectrics, vol. 67, no. 1, pp. 137-141, (1986).
    [14] N. A. Shepelin, A. M. Glushenkov, V. C. Lussini et al., "New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting", Energy & Environmental Science, vol. 12, no. 4, pp. 1143-1176, (2019).
    [15] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, no. 87, pp. 184-186, (1882).
    [16] J. Kameoka & H. Craighead, "Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning", Applied Physics Letters, vol. 83, no. 2, pp. 371-373, (2003).
    [17] J. Kameoka, R. Orth, Y. Yang et al., "A scanning tip electrospinning source for deposition of oriented nanofibres", Nanotechnology, vol. 14, no. 10, p. 1124, (2003).
    [18] T. J. Sill & H. A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering", Biomaterials, vol. 29, no. 13, pp. 1989-2006, (2008).
    [19] S. Lee & S. K. Obendorf, "Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration", Textile research journal, vol. 77, no. 9, pp. 696-702, (2007).
    [20] D. Sun, C. Chang, S. Li et al., "Near-field electrospinning", Nano letters, vol. 6, no. 4, pp. 839-842, (2006).
    [21] T. Subbiah, G. S. Bhat, R. W. Tock et al., "Electrospinning of nanofibers", Journal of applied polymer science, vol. 96, no. 2, pp. 557-569, (2005).
    [22] G. I. Taylor, "Electrically driven jets", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, no. 1515, pp. 453-475, (1969).
    [23] E. D. Boland, G. E. Wnek, D. G. Simpson et al., "Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning", Journal of Macromolecular Science, Part A, vol. 38, no. 12, pp. 1231-1243, (2001).
    [24] G. F. Zheng, L. Y. Wang, H. L. Wang et al., "Deposition characteristics of direct-write suspended micro/nano-structures," in Advanced Materials Research, 2009, vol. 60: Trans Tech Publ, pp. 439-444.
    [25] Z. L. Wang & J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, vol. 312, no. 5771, pp. 242-246, (2006).
    [26] F.-R. Fan, Z.-Q. Tian, & Z. L. Wang, "Flexible triboelectric generator", Nano energy, vol. 1, no. 2, pp. 328-334, (2012).
    [27] R. Yang, Y. Qin, L. Dai et al., "Power generation with laterally packaged piezoelectric fine wires", Nature nanotechnology, vol. 4, no. 1, p. 34, (2009).
    [28] L. S. Fang, C. Y. Tsai, M. H. Xu et al., "Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions", Nanotechnology, vol. 31, no. 15, p. 155502, (2020).
    [29] C. Chen, C. Tsai, M. Xu et al., "A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources", Express Polymer Letters, vol. 13, no. 6, pp. 533-542, (2019).
    [30] T. H. Lee, C. Y. Chen, C. Y. Tsai et al., "Near-field electrospun piezoelectric fibers as sound-sensing elements", Polymers, vol. 10, no. 7, p. 692, (2018).
    [31] Y.-K. Fuh, S.-C. Li, C. Chen et al., "A fully packaged self-powered sensor based on near-field electrospun arrays of poly (vinylidene fluoride) nano/micro fibers", Express Polymer Letters, vol. 12, no. 2, (2018).
    [32] Y.-K. Fuh, S.-C. Li, & C.-Y. Chen, "Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection", APL Materials, vol. 5, no. 7, p. 074202, (2017).
    [33] Y. K. Fuh, B. S. Wang, & C.-Y. Tsai, "Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array", Scientific reports, vol. 7, no. 1, pp. 1-7, (2017).
    [34] Y. K. Fuh, Z. M. Huang, B. S. Wang et al., "Self-powered active sensor with concentric topography of piezoelectric fibers", Nanoscale research letters, vol. 12, no. 1, p. 44, (2017).
    [35] Y.-K. Fuh & H.-C. Ho, "Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition", Nanotechnology, vol. 27, no. 9, p. 095401, (2016).
    [36] Y. K. Fuh & B. S. Wang, "Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition", Nano Energy, vol. 30, pp. 677-683, (2016).
    [37] Y. K. Fuh, C. C. Kuo, Z. M. Huang et al., "A transparent and flexible graphene‐piezoelectric fiber generator", Small, vol. 12, no. 14, pp. 1875-1881, (2016).
    [38] Y.-K. Fuh, J.-C. Ye, P.-C. Chen et al., "Hybrid energy harvester consisting of piezoelectric fibers with largely enhanced 20 V for wearable and muscle-driven applications", ACS applied materials & interfaces, vol. 7, no. 31, pp. 16923-16931, (2015).
    [39] Y.-K. Fuh, P.-C. Chen, Z.-M. Huang et al., "Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers", Nano Energy, vol. 11, pp. 671-677, (2015).
    [40] Y.-K. Fuh, P.-C. Chen, H.-C. Ho et al., "All-direction energy harvester based on nano/micro fibers as flexible and stretchable sensors for human motion detection", RSC Advances, vol. 5, no. 83, pp. 67787-67794, (2015).
    [41] Y.-K. Fuh, J.-C. Ye, P.-C. Chen et al., "A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers", Journal of Materials Chemistry A, vol. 2, no. 38, pp. 16101-16106, (2014).
    [42] Y. J. Kim, J. Lee, S. Park et al., "Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators", RSC advances, vol. 7, no. 78, pp. 49368-49373, (2017).
    [43] E. Alpaydin, Introduction to machine learning, MIT press, 2020.
    [44] P. R. Norvig & S. A. Intelligence, A modern approach, Prentice Hall, 2002.
    [45] M. Van Otterlo & M. Wiering, "Reinforcement learning and markov decision processes," in Reinforcement Learning: Springer, 2012, pp. 3-42.
    [46] J. Schmidhuber, "Deep learning in neural networks: An overview", Neural networks, vol. 61, pp. 85-117, (2015).
    [47] Y. LeCun, Y. Bengio, & G. Hinton, "Deep learning", nature, vol. 521, no. 7553, pp. 436-444, (2015).
    [48] A. G. M. L. S. Fernandez, R. B. H. Bunke, & J. Schmiduber, "A novel connectionist system for improved unconstrained handwriting recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, (2009).
    [49] S. Hochreiter & J. Schmidhuber, "Long short-term memory", Neural computation, vol. 9, no. 8, pp. 1735-1780, (1997).
    [50] A. Graves & J. Schmidhuber, "Framewise phoneme classification with bidirectional LSTM and other neural network architectures", Neural networks, vol. 18, no. 5-6, pp. 602-610, (2005).
    [51] H. Mayer, F. Gomez, D. Wierstra et al., "A system for robotic heart surgery that learns to tie knots using recurrent neural networks", Advanced Robotics, vol. 22, no. 13-14, pp. 1521-1537, (2008).
    [52] Y.-S. Park, J. Kim, J. M. Oh et al., "Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios", Nano letters, vol. 20, no. 1, pp. 441-448, (2019).
    [53] H. C. Bidsorkhi, A. G. D’Aloia, G. De Bellis et al., "Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP film composites", Materials Today Communications, vol. 11, pp. 163-173, (2017).
    [54] B. Yu, H. Yu, T. Huang et al., "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density", Nano Energy, vol. 48, pp. 464-470, (2018).
    [55] Z. Wang, A. A. Volinsky, & N. D. Gallant, "Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom‐built compression instrument", Journal of Applied Polymer Science, vol. 131, no. 22, (2014).
    [56] A. Vinogradov & F. Holloway, "Electro-mechanical properties of the piezoelectric polymer PVDF", Ferroelectrics, vol. 226, no. 1, pp. 169-181, (1999).
    [57] V. Bhavanasi, D. Y. Kusuma, & P. S. Lee, "Polarization Orientation, Piezoelectricity, and Energy Harvesting Performance of Ferroelectric PVDF‐TrFE Nanotubes Synthesized by Nanoconfinement", Advanced Energy Materials, vol. 4, no. 16, p. 1400723, (2014).
    [58] N. Meng, X. Zhu, R. Mao et al., "Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties", Journal of Materials Chemistry C, vol. 5, no. 13, pp. 3296-3305, (2017).

    QR CODE
    :::