| 研究生: |
吳姿賢 Tzu-Hsien Wu |
|---|---|
| 論文名稱: |
兩性離子微珠抗阻塞過濾裝置應用於分離大量循環腫瘤細胞 Anti-Clogging Filtration Device with Zwitterionized Microspheres for Mass Isolation of Circulating Tumor Cells |
| 指導教授: |
黃俊仁
Chun-Jen Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生醫科學與工程學系 Department of Biomedical Sciences and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 雙離子磺甜菜鹼 、抗阻塞特性 、循環腫瘤細胞 、無抗體捕捉系統 、血液接觸之醫療器材 |
| 外文關鍵詞: | Zwitterionic sulfobetaine silane, Anti-clogging property, Circulating tumor cells, Ligand-free capture system, Blood-contacting medical device |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今,循環腫瘤細胞 (CTCs) 在癌症的診斷及預後中扮演著極為關鍵的角色,因其可應用於臨床上即時監測腫瘤復發及制定新的治療標靶藥物,同時也可透過循環腫瘤細胞的數量變化去評估癌症轉移的情形。目前許多微過濾裝置已被開發應用於分離極稀少循環腫瘤細胞,然而仍有許多缺點存在,像是: 低效率,低純度,壽命短,選擇性低。而造成上述缺點的原因在於血液中的纖維蛋白原以非特異性吸附於材料表面而引起一連串的連鎖效應並形成血栓導致過濾裝置堵塞。因此,本研究利用兩性雙離子 (Sulfobetaine silane, SBSi) 在二氧化矽微珠材料上進行自組裝單層膜修飾。利用SBSi超親水與抗粘黏特性加速過濾效果與避免血栓。此外,將SBSi修飾在二氧化矽微珠上,並將之填充管柱內,利用微珠間空隙尺寸大小選擇性地分離血液中CTCs。爾後透過傅立葉轉換紅外線光譜 (FT-IR) 及固態核磁共振光譜儀 (C13 NMR) 進行定性分析;熱重分析儀(TGA)及元素分析(EA)進行定量分析。透過蛋白質定量 (BCA Kit)證實SBSi修飾後的微珠具有抗蛋白質吸附之能力。同時,有鑑於應用端為生物醫學領域,利用溶血試驗、血小板貼附試驗及細胞存活率試驗進行安全性評估。而試驗顯示修飾之微珠除了具優異之血液相容性及可大幅降低血小板貼附外,同時也具良好之生物相容性。 此後,將各種不同直徑之二氧化矽微珠填充入管住中以控制微珠間孔洞尺寸,利用循環腫瘤細胞與血球細胞大小差異來捕獲血液中稀少之循環腫瘤細胞。經修飾之微珠相較於未修飾之微珠裝填之微過濾裝置相比具有更高之體積通量,表明具親水性表面之微珠能抵抗非特異性吸附。此外,使用自動化細胞計數器 (Cell counter) 來驗證血球細胞的滯留管柱情形及優化最佳微珠直徑以用於有效分離循環腫瘤細胞及血球細胞。最後,選用大腸癌細胞(CRCs) 為分離癌細胞實驗之細胞株,將含有大量大腸癌細胞之血清緩衝液通過不同直徑微珠裝填之過濾裝置以鑑別其細胞選擇性。不同直徑微珠裝填之過濾裝置皆表現高捕獲性能,細胞捕獲效率高達100%。由上述結果得知,功能性二氧化矽微珠將具有潛力進一步發展為抗堵塞分離大量循環腫瘤細胞之過濾系統。
Isolation and enumeration of circulating tumor cells (CTCs) from periphery blood are of significance in diagnosis and prognosis of cancers. A key challenge to the clinical utility of CTCs is the mass collection of viable rare cells. Although many microfiltration-based cell separation devices were developed to isolate individual circulating tumor cells from blood, the drawbacks, such as low efficiency, high impurity, short utility time, low selectivity, and fail in the collection of CTC clusters remain. Herein, the aim of the thesis is to develop an efficient filtration system to isolate CTCs and clusters using zwitterionized silica microspheres. Specifically, the silica microspheres were modified with zwitterionic sulfobetaine silane (SBSi), to provide the excellent resistance against clogging due to the contact of blood. The microspheres of various diameters were packed in a column in order to control the pore sizes between microspheres for selectively capturing CTCs with the larger size than blood cells. In this study, the surface characterization of the coatings on microspheres was conducted by Fourier Transform Infrared Spectroscopy (FT-IR) and Solid State Nuclear Magnetic Resonance Spectrometer (C13 NMR) for qualitative analysis, and Thermogravimetric Analyzer (TGA) and Elemental analysis (EA) for quantitative analysis. The tests for protein adsorption revealed the excellent antifouling property of SBSi coating prepared from a controlled condition. For the biomedical application, the biocompatibility of SBSi-modified microspheres were confirmed by the hemolysis test, platelet adhesion test, and cell viability assay. The results indicated that SBSi-modified silica microspheres possess good biocompatibility, superior blood cell compatibility and great resistance against the platelet adhesion in comparison with the un-modified microspheres. Moreover, the anti-clogging effect of SBSi-modified microspheres has been further proven by the volumetric flux of blood and retention of blood cells in columns. The cell retention of white blood cells (WBCs) and red blood cells (RBCs) after passing through the filtration devices was characterized using an automated cell counter for optimization the pore size of the column with microspheres. More importantly, the colorectal cancer cells (CRCs) were effectively and selectively captured by the column packed with the SBSi-modified silica microspheres. Consequently, the anti-clogging filtration prototype device was demonstrated to have the high entrapped performance, up to 100%. The potential implementation of the anti-clogging filtration system for isolating mass CTCs and clusters in clinical application is expected.
1.Fidler, I.J., The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. European Journal of Cancer (1965), 1973. 9(3): p. 223-227.
2.Massagué, J. and A.C. Obenauf, Metastatic colonization by circulating tumour cells. Nature, 2016. 529: p. 298.
3.Cheung, K.J. and A.J. Ewald, A collective route to metastasis: Seeding by tumor cell clusters. Science, 2016. 352(6282): p. 167-169.
4.Fabisiewicz, A. and E. Grzybowska, CTC clusters in cancer progression and metastasis. Medical Oncology, 2017. 34(1): p. 12.
5.Pantel, K. and M. Speicher, The biology of circulating tumor cells. Oncogene, 2016. 35(10): p. 1216.
6.Plaks, V., C.D. Koopman, and Z. Werb, Circulating tumor cells. Science, 2013. 341(6151): p. 1186-1188.
7.Dive, C. and G. Brady, SnapShot: circulating tumor cells. Cell, 2017. 168(4): p. 742-742. e1.
8.Krebs, M.G., et al., Circulating tumour cells: their utility in cancer management and predicting outcomes. Therapeutic advances in medical oncology, 2010. 2(6): p. 351-365.
9.Meng, S., et al., Circulating tumor cells in patients with breast cancer dormancy. Clinical cancer research, 2004. 10(24): p. 8152-8162.
10.Au, S.H., et al., Clusters of circulating tumor cells: A biophysical and technological perspective. Current opinion in biomedical engineering, 2017. 3: p. 13-19.
11.Shen, Z., A. Wu, and X. Chen, Current detection technologies for circulating tumor cells. Chemical Society Reviews, 2017. 46(8): p. 2038-2056.
12.Jackson, J.M., et al., Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chemical Society Reviews, 2017. 46(14): p. 4245-4280.
13.Patil, P., et al., Isolation of circulating tumour cells by physical means in a microfluidic device: a review. RSC Advances, 2015. 5(109): p. 89745-89762.
14.Zheng, S., et al., Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. Journal of chromatography A, 2007. 1162(2): p. 154-161.
15.Mohamed, H., et al., Isolation of tumor cells using size and deformation. Journal of Chromatography A, 2009. 1216(47): p. 8289-8295.
16.Sarioglu, A.F., et al., A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nature methods, 2015. 12(7): p. 685.
17.Sajay, B.N.G., et al., Towards an optimal and unbiased approach for tumor cell isolation. Biomedical microdevices, 2013. 15(4): p. 699-709.
18.Hosokawa, M., et al., Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Analytical chemistry, 2013. 85(12): p. 5692-5698.
19.Qin, X., et al., Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps. Lab on a Chip, 2015. 15(10): p. 2278-2286.
20.Chen, H., et al., Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Scientific Reports, 2017. 7(1): p. 610.
21.Cheng, Y., et al., High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood. Biomicrofluidics, 2016. 10(1): p. 014118.
22.Park, J.-M., et al., Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Analytical chemistry, 2012. 84(17): p. 7400-7407.
23.Hou, H.W., et al., Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific reports, 2013. 3: p. 1259.
24.Guan, G., et al. High throughput circulating tumor cell isolation using trapezoidal inertial microfluidics. in Proceedings of 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, Germany. 2013.
25.Lin, E., et al., High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells. Cell systems, 2017. 5(3): p. 295-304. e4.
26.Moon, H.-S., et al., Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab on a Chip, 2011. 11(6): p. 1118-1125.
27.Chen, W., et al., Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS nano, 2012. 7(1): p. 566-575.
28.Dong, Y., et al., Microfluidics and circulating tumor cells. J Mol Diagn, 2013. 15(2): p. 149-57.
29.Seal, S., A sieve for the isolation of cancer cells and other large cells from the blood. Cancer, 1964. 17(5): p. 637-642.
30.Mohamed, H., et al., Development of a rare cell fractionation device: application for cancer detection. IEEE transactions on nanobioscience, 2004. 3(4): p. 251-256.
31.Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235.
32.Hosokawa, M., et al., Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Analytical chemistry, 2010. 82(15): p. 6629-6635.
33.Sarioglu, A.F., et al., A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nature Methods, 2015. 12(7): p. 685-+.
34.Vona, G., et al., Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol, 2000. 156(1): p. 57-63.
35.Vona, G., et al., Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. The American journal of pathology, 2000. 156(1): p. 57-63.
36.Desitter, I., et al., A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer research, 2011. 31(2): p. 427-441.
37.Desitter, I., et al., A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res, 2011. 31(2): p. 427-41.
38.Adams, D.L., et al., The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC advances, 2014. 4(9): p. 4334-4342.
39.Tang, C.-M., et al., Filtration and Analysis of Circulating Cancer Associated Cells from the Blood of Cancer Patients. Biosensors and Biodetection: Methods and Protocols, Volume 2: Electrochemical, Bioelectronic, Piezoelectric, Cellular and Molecular Biosensors, 2017: p. 511-524.
40.Riahi, R., et al., A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. International Journal of Oncology, 2014. 44(6): p. 1870-1878.
41.Gogoi, P., et al., Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs) from Clinical Blood Samples. Plos One, 2016. 11(1).
42.Gogoi, P., et al., Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PloS one, 2016. 11(1): p. e0147400.
43.Chudziak, J., et al., Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst, 2016. 141(2): p. 669-678.
44.Xu, L., et al., Optimization and evaluation of a novel size based circulating tumor cell isolation system. PloS one, 2015. 10(9): p. e0138032.
45.Lewis, S.M., et al., Dacie and Lewis practical haematology. 10th ed. 2006, Philadelphia: Churchill Livingstone/Elsevier. xiii, 722 p.
46.Alvankarian, J., A. Bahadorimehr, and B. Yeop Majlis, A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics, 2013. 7(1): p. 14102.
47.Allard, W.J., et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Research, 2004. 10(20): p. 6897-6904.
48.Park, J.M., et al., Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal Chem, 2012. 84(17): p. 7400-7.
49.Brenner, H., M. Kloor, and C.P. Pox, Colorectal cancer. Lancet, 2014. 383(9927): p. 1490-1502.
50.Mu, L., et al., Small-sized colorectal cancer cells harbor metastatic tumor-initiating cells. Oncotarget, 2017. 8(64): p. 107907-107919.
51.M. Jackson, J., et al., Materials and microfluidics: Enabling the efficient isolation and analysis of circulating tumour cells. Vol. 46. 2017.
52.Wei, H.B., et al., Particle sorting using a porous membrane in a microfluidic device. Lab on a Chip, 2011. 11(2): p. 238-245.
53.Moon, H.S., et al., Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab on a Chip, 2011. 11(6): p. 1118-1125.
54.Gorbet, M.B. and M.V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004. 25(26): p. 5681-5703.
55.Courtney, J.M., et al., Biomaterials for blood-contacting applications. Biomaterials, 1994. 15(10): p. 737-744.
56.Brisbois, E.J., Novel Nitric Oxide (NO)-Releasing Polymers and Their Biomedical Applications. 2014, University of Michigan.
57.Coumans, F.A., et al., Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One, 2013. 8(4): p. e61770.
58.Coumans, F.A.W., et al., Filtration Parameters Influencing Circulating Tumor Cell Enrichment from Whole Blood. Plos One, 2013. 8(4).
59.Xu, L.-C., J. W Bauer, and C. A Siedlecki, Proteins, Platelets, and Blood Coagulation at Biomaterial Interfaces. Vol. 124. 2014. 49-68.
60.Hlady, V. and J. Buijs, Protein adsorption on solid surfaces. Current Opinion in Biotechnology, 1996. 7(1): p. 72-77.
61.Protein‐Surface Interactions, in An Introduction To Tissue‐Biomaterial Interactions.
62.Shaoyi, J. and C. Zhiqiang, Ultralow‐Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p. 920-932.
63.Jo, S. and K. Park, Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000. 21(6): p. 605-616.
64.Xiao, X.-F., X.-Q. Jiang, and L.-J. Zhou, Surface Modification of Poly Ethylene Glycol to Resist Nonspecific Adsorption of Proteins. Chinese Journal of Analytical Chemistry, 2013. 41(3): p. 445-453.
65.Verhoef, J.J.F. and T.J. Anchordoquy, Questioning the use of PEGylation for drug delivery. Drug Delivery and Translational Research, 2013. 3(6): p. 499-503.
66.Lowe, A.B. and C.L. McCormick, Synthesis and Solution Properties of Zwitterionic Polymers. Chemical Reviews, 2002. 102(11): p. 4177-4190.
67.Yang, W., et al., Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials, 2009. 30(29): p. 5617-5621.
68.Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
69.Genzer, J., Soft Matter Gradient Surfaces: Methods and Applications. 2012.
70.Zhao, X. and R. Kopelman, Mechanism of Organosilane Self-Assembled Monolayer Formation on Silica Studied by Second-Harmonic Generation. The Journal of Physical Chemistry, 1996. 100(26): p. 11014-11018.
71.Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
72.Celestin, M., et al., A review of self-assembled monolayers as potential terahertz frequency tunnel diodes. Nano Research, 2014. 7(5): p. 589-625.
73.Nicosia, C. and J. Huskens, Reactive self-assembled monolayers: from surface functionalization to gradient formation. Materials Horizons, 2014. 1(1): p. 32-45.
74.Gooding, J.J. and S. Ciampi, The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chemical Society Reviews, 2011. 40(5): p. 2704-2718.
75.Gilles, S., Chemical Modification of Silicon Surfaces for the Application in Soft Lithography. 2007: Forschungszentrum, Zentralbibliothek.
76.Arkles, B., Tailoring Surfaces with Silanes. Vol. 7. 1977. 766-778.
77.Mittal, K.L., Silanes and Other Coupling Agents, Volume 3. 2004: CRC Press.
78.Wu, L., et al., Synthesis of a Zwitterionic Silane and Its Application in the Surface Modification of Silicon-Based Material Surfaces for Improved Hemocompatibility. ACS Applied Materials & Interfaces, 2010. 2(10): p. 2781-2788.
79.Bagwe, R.P., L.R. Hilliard, and W. Tan, Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir, 2006. 22(9): p. 4357-4362.
80.Hailin, C., et al., Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed‐mode ultra high performance liquid chromatography separations. Journal of Separation Science, 2017. 40(22): p. 4320-4328.
81.Nanda, D., et al., Self-assembled monolayer of functionalized silica microparticles for self-cleaning applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 529: p. 231-238.
82.Grama, S. and D. Horák, Preparation of Monodisperse Porous Silica Particles Using Poly(Glycidyl Methacrylate) Microspheres as a Template. Vol. 64. 2015. S11-S17.
83.Demir, A. and A. Serpengüzel, Silica microspheres for biomolecular detection applications. Vol. 152. 2005. 105-8.
84.Huang, K.-T., S.-B. Yeh, and C.-J. Huang, Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil–Water Separation. ACS Applied Materials & Interfaces, 2015. 7(38): p. 21021-21029.
85.Wenten, I.G., et al., Chapter 11 - The Bubble Gas Transport Method, in Membrane Characterization. 2017, Elsevier. p. 199-218.
86.Estephan, Z.G., J.A. Jaber, and J.B. Schlenoff, Zwitterion-Stabilized Silica Nanoparticles: Toward Nonstick Nano. Langmuir, 2010. 26(22): p. 16884-16889.
87.Stolnik, S., et al., The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2001. 1514(2): p. 261-279.
88.Zhao, C., et al., Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces. Langmuir, 2011. 27(8): p. 4906-4913.
89.Lankoff, A., et al., Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Vol. 7. 2012.
90.Sahu, D., et al., In Vitro Cytotoxicity of Nanoparticles: A Comparison between Particle Size and Cell Type. Vol. 2016. 2016.
91.Bimbo, L.M., et al., Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012. 4(10): p. 3184-3192.
92.Kettiger, H., et al., Interactions between silica nanoparticles and phospholipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016. 1858(9): p. 2163-2170.
93.Aprioku, J.S., Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil, 2013. 14(4): p. 158-72.
94.Kettiger, H.E., Silica nanoparticles and their interaction with cells: a multidisciplinary approach. 2014, University_of_Basel.
95.H., d.B.P.P., The amoeboid movement of the mammalian leukocyte in tissue culture. The Anatomical Record, 1946. 95(2): p. 177-191.
96.Jack, R.M., et al., Ultra‐Specific Isolation of Circulating Tumor Cells Enables Rare‐Cell RNA Profiling. Adv Sci (Weinh), 2016. 3(9).
97.de Wit, S., et al., The detection of EpCAM(+) and EpCAM(-) circulating tumor cells. Vol. 5. 2015. 12270.