| 研究生: |
董詠濬 Yung-Chun Tung |
|---|---|
| 論文名稱: |
以離心機及數值模型探討延續性對多節理岩坡楔形塊體之破壞機制 |
| 指導教授: |
黃文昭
Wen-Chao Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 楔形破壞 、岩石邊坡 、物理試驗 、離心機試驗 、3DEC 、弱面位態 |
| 外文關鍵詞: | wedge failure, rock slope, physical test, centrifuge test, 3DEC, bedding attitude |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地質環境之構造運動頻繁,因物理或化學作用產生的岩體弱面、斷層以及褶皺等構造極為發達,以工程角度來看,密集的地質構造更直接影響岩石邊坡的穩定性和破壞行為。傳統的單一楔形塊體以兩個弱面及坡面、坡頂構成,破壞時沿兩弱面之交線滑動;然而,依黃鎮臺、夏龍源(1990)之研究結果以及實際走訪台二線83k附近(南雅里)現地調查結果發現,楔形破壞的發生並非僅為兩組不連續面切出之楔形塊體滑動,大多數是由三組不連續面(兩組弱面與層面)所構成的楔形塊體產生破壞,但此一類型的楔形塊體運動方式在前人研究中較少提及。
本研究以人造岩體進行簡化楔形塊體運動及破壞之物理及離心機試驗,以不同的弱面、層面位態以及節理延續性分析楔形塊體的破壞過程,並用數值軟體進行模擬。從研究結果得知:若層面傾向與坡面傾向相反,則楔形塊體運動以翻倒以及滑動破壞為主,且通常為坡趾處的楔形塊體先產生破壞,其塊體崩落率通常較低;若層面傾向與坡面傾向相同,塊體運動模式以沿弱面交線或平面滑動為主,且大多為坡頂或坡面之塊體先產生滑動。此外,在相同層面位態以及節理分布下,兩弱面夾角愈大,其塊體崩落率亦愈大。
Taiwan is located at the boundary between the Philippine Sea Plate and Eurasian Plate. Thus, the tectonic plate activity is frequent. Geological structures such as folds, faults, and discontinuities play a critical role in the stability and behaviour of both natural and engineered rock slopes.
Traditional wedge block is defined by two discontinuities, slope top and slope face and slide alone the line of intersection. However, compared with Huang, C.T. and Shiah, L.Y., “A case study on the Nan-Ya landslide along the north coast highway” (1990), and the actual investigation of Nanya village. Wedge failure that occurs not only in the rock slope cut by two discontinuities, but most of them is cut by a third set of discontinuities (bedding).
In this study we use man made rock material to do physical test、centrifuge test and use 3DEC to simulate the result, in order to know its moving process under different ξ angle、bedding attitude and joint distribution.
From the result of this study, we can conclude that: (1) if the bedding is parallel to the line of intersection, block moving process is mostly planer failure. However if the bedding is perpendicular to the line of intersection, block moving process is mostly falling. (2) From the result of different ξ angle but same joint distribution. We found out that the block with ξ=120° has greater falling ratio than the block with ξ=90°.
1.李崇正、洪汶宜,「離心模型試驗簡介」,國家地震工程研究中心簡訊,第79期,第 1-2 頁 (2011)
2.林育槿,「以分離元素法與離心模型試驗探討順向坡滑動行為」,碩士論文,國立中央大學土木工程學系,桃園 (2016)
3.林劭儒,「逆向斜交坡中不同節理組特性對楔形岩體變形及破壞機制影響之探討」,碩士論文,國立台灣大學土木工程學系,台北 (2019)
4.翁孟嘉、鄭富書、黃燦輝、蔡立盛,「木山層砂岩之變形特性探討」,第九屆大地工程學術研討會論文集,桃園 (2001)。
5.莊庭鳳,「以分離元素法探討板岩邊坡變形機制」,碩士論文,國立高雄大學土木與環境工程學系,高雄 (2014)
6.黃鎮臺、夏龍源,「北部濱海公路南雅里路段邊坡崩塌個案之研究」,礦冶,第34卷,第4期,第 89-94 頁 (1990)。
7.黃鑑水,臺灣地質圖說明圖幅第四號-臺北,經濟部中央地質調查所 (1988)。
8.鄭皓文,「以數值模型與離心模型試驗探討含二組正交節理之逆向坡變行及破壞行為」,碩士論文,國立中央大學土木工程學系,桃園 (2019)
9.羅宇軒,「以隨機產生之岩石節理面進行數值模擬與直剪試驗」,碩士論文,國立中央大學土木工程學系,桃園 (2018)
10.Aydan, Ö., “Large Rock Slope Failures Induced by Recent Earthquakes,” Rock Mechanics and Rock Engineering, Vol. 49, pp. 2503-2524 (2016).
11.Chigira, M., “Long-term gravitational deformation of rocks by mass rock creep,” Engineering Geology, Vol. 32, No. 3, pp. 157-184 (1992).
12.CloudCompare (Version 2.10.2)(Software). (2019) GPL software Retrieved from http://www.cloudcompare.org/
13.Dershowitz, W.S., and Herda, H.H., “Interpretation of fracture spacing and intensity ,”Proceedings of the 33rd US Symposium on Rock Mechanics, Santa Fe, NM, pp. 757-766 (1992).
14.Feng, P., and Lajtai, E.Z., “Probabilistic treatment of the sliding wedge with EzSlide,” Engineering Geology, Vol. 50, pp. 153-163 (1998).
15.Itasca Consulting Group, Inc. (2003). 3DEC User’s Manual. Minneapolis, MN: Itasca Consulting Group Inc.
16.Kumsar, H., and Aydan, Ö., and Ulusay, R., “Dynamic and static stability assessment of rock slopes against wedge failures,” Rock Mechanics and Rock Engineering, Vol. 33, No. 1, pp. 31-51 (2000).
17.Riquelme, A. J., and Abellán, A. and Tomás, R., “Discontinuity spacing analysis in rock masses using 3D point clouds,” Engineering geology, Vol. 195, pp. 185-195 (2015).
18.Stead, D., and Wolter, A., “A critical review of rock slope failure mechanisms: The importance of structural geology,” Journal of Structural Geology, Vol. 74, pp. 1-23 (2015).
19.Wyllie, D.C., and Mah, C.W., Rock Slope Engineering, Spon Press, London and New York, pp. 153-175 (2004).