跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林冠宏
Kuan-Hung Lin
論文名稱: 以數值模擬探討微管流之物理效應
Investigations of physical effects in microchannels by numerical simulation
指導教授: 吳俊諆
Jiunn-Chi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 95
中文關鍵詞: 黏滯消散壓縮效應稀薄效應微管流
外文關鍵詞: Microchannel flow, Compressibility, Rarefaction, Viscous dissipation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是利用FEMLAB軟體(依據有限元素法)模擬可壓縮氣體在微流道(平行板以及圓管)的熱流特性和物理效應,並與解析解、實驗數據以及他人的數值結果比對。馬赫數與雷諾數分別介於0.5×10-3<Ma<0.84以及10-3<Re<800,而克德森數之計算範圍則是包括滑動流與過渡流滑動(0.024<Kn<3.44),管徑尺寸介於0.01μm~0.01m。
    有鑒於前人(陳家勇, 2002)的數值解並未考慮邊界上不連續的滑動速度、溫度躍昇現象,使其數值解並不完備。因此,為補足前人在探討微管流物理效應之不足,除了滑動流之修正外,本文也考慮多重物理效應(稀薄效應、壓縮性、黏滯消散以及可逆功)對流場熱流特性的影響;而這些效應在傳統管多被忽略。同時利用三種滑動模式探討克德森數在落入過渡流後的速度與壓降分佈。由數值結果發現:1) 隨進口壓力的增加,非線性壓力分佈愈明顯;2) 滑動流之質量流率高於不可滑動流;3) 流體之壓縮性隨進口壓力增高而增大,加上流場並不會形成完全發展流,因此摩擦係數已不再是定值,而是局部馬赫數之函數;4) 隨管徑縮減,黏性耗散愈明顯;5) 當克德森數逐漸落入過渡流後,利用一階滑動邊條件所得之速度分佈會愈趨扁平,與兩種修正模式之差異也愈大,隨克德森數之增高此現象愈明顯,修正模式所得之速度分佈則仍是維持類似拋物線的型態。


    This work studies the compressible gaseous flow in microchannels (diameter size ranging from 0.01 μm to 0.01 m) using the FEMLAB software. Simulations are performed by solving Navier-Stokes equations with modification wall boundary conditions (slip velocity and temperature jump). The flow regime simulated is from the slip flow upto the transitional flow, which consist of the following flow parameters: 0.224≦Kn≦3.44, 10-3≦Re≦800 and 0.5x10-3≦Ma≦0.84. In order to thoroughly analyze various physical effects in the microchannel flow, this work studies multiphysics effects (rarefaction, compressibility, viscous dissipation, reversible work) on the thermal-flow characteristics of the microchannel. Results reveal several interesting features: 1) as the inlet pressure increase, the streamwise nonlinear pressure distribution appears visibly; 2) the slip flow has a higher mass flowrate than that of the nonslip flow; 3) compressibility effect cause the local friction factor increases with increasing local Ma; 4) due to high velocity gradients in the microchannel flow, viscous dissipation and reversible work can not be neglected; 5) first-order slip velocity gives unrealistically over-prediction of velocity at transitional flow regime, and the new continuum based slip model is extended successfully to the transitional flow regime.

    目 錄 頁次 摘 要 I 英 文 摘 要 III 目 錄 V 表 目 錄 VII 圖 目 錄 VIII 符號說明 XIII 第一章 前言 1 1.1 研究動機 1 1.2 微小管道中之熱流現象 2 1.3 文獻回顧 8 1.4 研究目的 15 第二章 數值分析 16 2.1 有限元素法(Finite Element Method) 16 2.2 形狀函數 17 2.3 統馭方程式 18 2.4 通式(General form)與弱式(Weak form) 21 2.5 邊界條件與起始條件 25 2.6 摩擦係數與摩擦係數鈕索數 28 第三章 結果與討論 29 3.1 稀薄效應與壓縮效應 29 3.2 切線動量調整係數 對流場的影響 32 3.3 溫度躍昇 34 3.4 黏滯消散與可逆功 35 3.5 修正滑動速度 37 第四章 結論與建議 39 4.1 結論 39 4.2 建議 40 參考文獻 42 附錄 A 46

    陳家勇,壓縮微管流的熱流分析,國立中央大學碩士論文,中壢市,2002。
    Arkilic, E. B., Schmidt, M. A., and Breuer, K. S., “Gaseous flow in microchannels,” ASME Symposium on Micromachining and Fluid Mechanics, Nov. 1994.
    Beskok, A. and Karniadakis, G. E., “Simulation of heat and momentum transfer in complex micro geometries,” J. Thermophysics and Heat Transfer, Vol. 8, No. 4, pp. 647-655, 1994.
    Beskok, A., Karniadakis, G. E. and Trimmer, W., “Rarefaction and compressibility effects in gas microflows,” J. Fluids Eng., Vol. 118, pp. 448-456, 1996.
    Beskok, A. and Karniadakis G. E., “A model for flows in channels, pipes, and ducts at micro and nano scales,” Microscale Thermal Engineering, Vol. 3, 15-20, pp. 43-77, 1999.
    Chen, C. S., Lee, S. M. and Sheu, J. D., “Numerical analysis of gas flow in microchannels,” Numerical Heat Transfer, Part A, 33: pp. 749-762, 1998.
    Chen, C. S., Lee, S. M. and Sheu, J. D., “The analytical and numerical solutions for gaseous slip flow in microchannels,” J. Chinese Institute of Engineers, Vol. 23, No. 2, pp. 229-235, 2000.
    Cuta, J. M., McDonald, C. E., and Shekarriz, A., “Forced convection heat transfer in parallel channel array microchannel heat exchanger,” ASME/HTD-Vol. 338, Advances in Energy Efficiency, Heat/Mass Transfer Enhancement, pp. 17-23, 1996.
    Ebert, W. A., and Sparrow, E. M., “Slip flow in rectangular and annular ducts,” J. Basic Eng., Vol. 87, pp. 1018-1024, 1965.
    FEMLAB User’s Guide and Introduction, Version 2.3, COMSOL AB, Sweden, 2002.
    FIDAP 8 Theory Manual, Fluent Inc., USA, 1998.
    Flockhart, S. M. and Dhariwal, R. S., “Experimental and numerical investigation into the flow characteristics of channels etched in (100) silicon,” J. Fluids Eng., Vol. 120, pp. 291-295, 1998.
    Guo, Z. Y. and Wu, X. B., “Compressibility effect on the gas flow and hest transfer in a microtube,” Int. J. Heat Mass Transfer, Vol. 40, No. 13, pp. 3251-3254, 1997.
    Guo, Z. Y., “Size effect on microscale single-phase flow and heat transfer,” Int. J. Heat and Mass Transfer, Vol. 46, pp. 149-159, 2003.
    Harley, J. C., Huand, Y., Bau, H. and Zemel, J. N., “Gas flow in micro channels,” J. Fluid Mech., Vol. 284, pp. 257-274, 1995.
    Harms, T. M., Kazmierczak, M. J. and Gerner, F. M., “Developing convective heat transfer in deep rectangular microchannels,” Int. J. Heat Fluid Flow, Vol. 20, pp. 149-157, 1999.
    Kaverhpour, H. P., Faghri, M. and Asako, Y., “Effects of compressibility and rarefaction on gaseous flows in microchannels,” Numerical Heat Transfer, Part A, 32: pp. 677-696, 1997.
    Li, J. M., Wang, B. X. and Peng, X. F., “Wall-adjacent layer analysis for developed-flow laminar heat transfer of gases in microchannels,” Int. J. Heat Mass Transfer, Vol. 43, pp. 839-847, 2000.
    Li, Z. X., Du, D. X. and Guo, Z. Y., “Investigation on the characteristics of frictional resistance of gas flow in microtubes,” Proc. of Symposium on Energy Engineering in the 21st Century, Vol. 2, pp. 658-664, 2000.
    Maxwell, J. C., “On stresses in Rarefied Gases arising from Inequalities of Temperature,” Philosophical Transactions of the Royal Society Part 1, Vol. 170, pp. 231-256, 1879.
    Mala, G. M. and Li, D., “Flow characteristics of water in microtubes,” Int. J. Heat and Fluid Flow, Vol. 20, pp. 142-148, 1999.
    Palm, B., “Heat transfer in microchannels,” Proc. of Inter. Conf. on Heat Transfer & Transport Phenomena in Microscale, Oct. 2000.
    Papautsky, I., Brazzle, J., Ammel, T. and Frazier, A. B., “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuators, Vol. 73, pp. 101-108, 1999.
    Peng, X. F. and Wang, B. X., “Forced convection and flow boiling heat transfer for liquid flowing through microchannels,” Int. J. Heat Mass Transfer, Vol. 36, No. 14, pp. 3421-3427, 1993.
    Peng, X. F. and Wang, B. X., “Liquid flow and heat transfer in microchannels with/without phase change,” Proc. 10th Int. Heat Transfer Conference, Brighton, England, Aug. 14-18, 1994a.
    Peng, X. F. and Wang, B. X., “Cooling characteristics with microchanneled structures,” J. Enhanced Heat Transfer, Vol. 1, No. 4, pp. 315-356, 1994b.
    Peng, X. F. and Peterson, G. P., “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Exp. Thermal and Fluid Science, Vol. 12, pp. 98-104, 1996a.
    Peng, X. F., Peterson, G. P. and Wang, B. X., “Flow boiling of binary mixtures in microchannel plates,” Int. J. Heat Mass Transfer, Vol. 39, No. 6, pp. 1257-1264, 1996b.
    Pong, K. C. and Ho, C. M., “Non-linear pressure distribution in microchannels,” Int. Mechanical Engineering Congress and Exposition, Chicago, Illinois, EFD-vol. 197, pp. 51-56, ASME, 1994.
    Qu, W., Mala, G. M. and Li, D., “Pressure-driven water flows in trapezoidal silicon microchannels,” Int. J. Heat Mass Transfer, Vol. 43, pp. 353-364, 2000.
    Smoluchowski, von M., ”Ueber warmeleitung in verunnten gasen,” Annalen der Physik und Chemi, Vol. 64, pp. 101-130, 1898.
    Schaff, S. A. and Chambre P. L., Flow of Rarefied Gases, Princeton University Press, Princeton, New Jersey, 1961.
    Tso, C. P. and Mahulikar, S. P., “The use of the Brinkman number for single phase forced convective heat transfer in microchannels,” Int. J. Heat Mass Transfer, Vol. 41, No. 12, pp. 1759-1769, 1998a.
    Tso, C. P. and Mahulikar, S. P., Proc. 2nd IEEE Electronics Packaging Technology Conference, Singapore, Dec., pp. 126-132, 1998b.
    Tso, C. P. and Mahulikar, S. P., “The role of the Brinkman number in analyzing flow transitions in microchannels,” Int. J. Heat Mass Transfer, Vol. 42, pp. 1813-1833, 1999.
    Tso, C. P. and Mahulikar, S. P., “Experimental verification of the role of Brinkman number in microchannels using local parameters,” Int. J. Heat Mass Transfer, Vol. 43, pp. 1837-1849, 2000.
    Tuckerman, D. B. and Pease, R. F. W., “High performance heat sinking for VLSI,” IEEE Electron Dev. Let., EDL-2, pp. 126-129, 1981.
    Wu, P. and Little, W. A., “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators,” Cryogenics, Vol. 23, No. 5, pp. 273-277, 1983.
    Wu, P. and Little, W. A., “Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators,” Cryogenics, Vol. 24, Aug., pp. 415-420, 1984.
    Yang, C., Li, D. and Hasliyah, J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects,” Int. J. Heat Mass Transfer, Vol. 41, pp. 4229-4249, 1998.
    Xue. H. and Fan Q., “New analytic solution of Navier-Stokes equations for microchannel flows,” Microscale Thermophysical Eng. Vol. 4, pp. 125-143,2000.
    Xu, B., Ooi, K. T., Mavriplis C. and Zaghloul, M. E., “Evaluation of viscous dissipation in liquid flow in microchannels,” J. Micromech. Microeng., Vol. 13, pp. 53-57, 2003.

    QR CODE
    :::