| 研究生: |
鄭翔文 Hsiang-Wen Cheng |
|---|---|
| 論文名稱: |
雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究 Impact of the radar data assimilation on heavy rainfall prediction associated with a multi-scale weather (Meiyu) system: a case study of SoWMEX IOP#8 |
| 指導教授: |
楊舒芝
Shu-Chih Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | WRF-LETKF雷達資料同化系統 、資料同化 、定量降雨即時預報 |
| 外文關鍵詞: | WRF-LETKF Radar Assimilation System, Data assimilation, quantitative precipitation nowcasting |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用Tsai et al. (2014) 開發之雷達資料同化系統(WRF-LETKF Radar Assimilation System) 同化七股及墾丁雷達資料,並提出有用的同化策略,以改善IOP#8期間的6月16日的降雨表現,探討此個案在臺灣西南至南部沿海地區所造成的持續性降雨能否藉由同化過中尺度觀測資訊的分析系集搭配WLRAS來改善梅雨個案的短期預報降水能力。
梅雨季的強降雨事件富含多重尺度交互作用與地形效應,造成在定量降水預報上的困難,因此本研究使用同化過中尺度資料之分析系集做為初始場,再利用對流尺度的雷達資料同化改善對流尺度的預報,藉由結合中尺度資料同化與對流尺度資料同化來改善梅雨季的降水預報。本研究採用三種不同的初始系集進行測試,分別為:1) Yang et al. (2014) 同化過傳統氣象觀測資料、衛星觀測資料之分析系集,2) 同上設定,但沒有GPS-RO觀測資料之分析系集,及3) 將NECP GFS Final Analysis (FNL 1^°×1^° 資料) 以3DVAR的背景誤差協方差加入隨機擾動而成的系集;實驗結果說明當提供同化過中尺度觀測資訊之環境場且含有流場相依的誤差結構作為初始場有利於掌握此個案之降水分布。
本研究亦測試WLRAS的同化策略,我們分別實驗同化徑向風更新模式風場、同化回波更新水氣相關變數、同化徑向風與回波更新所有模式預報變數。結果指出,僅修正風場可改善降雨的時間分布、但降雨強度與空間分布則仍有待改善;僅修正水氣相關變數則可改善降雨強度與空間分布,但水氣相關變數缺乏風場支持,在預報前期形成大量降雨;同時修正風場與水氣相關變數則可改善降雨的時間分布、空間分布及降雨強度,是為較佳的資料同化策略。
此外,雷達觀測風場有無法觀測切向風的限制,當使用觀測之徑向風同化切向之風場時,可能因為取樣誤差等誤差導致風場有錯誤的調整,降低分析品質。為減少上述情形,本實驗在雷達觀測範圍重複區採用特殊的觀測品質控管策略,以提升風場品質。
This study applies the WRF-LETKF Radar Assimilation System (WLRAS; Tsai et al. 2014), which couples the local ensemble transform Kalman filter with Weather Research and Forecasting, to assimilate two Doppler radars in Taiwan. The initial condition is the initial ensembles from Yang et al. (2014) which assimilate GTS and satellite data or only assimilate GTS data and AMV data or NCEP FNL data as initial state to improve short-term quantitative precipitation forecast. The importance of the initial fields to quantitative precipitation nowcasting are evaluated based on 2008 SoWMEX IOP#8 (2008/06/16). This study explores useful radar data assimilation strategies for improving the heavy precipitation prediction during Meiyu seasons in Taiwan, which are challenges due to complex terrain and multi-scale interactions.
Results show that providing a good environment and perturbation for WLRAS can improve the heavy precipitation prediction during Meiyu seasons in Taiwan. Results also indicate that assimilating radial wind can improve wind field and assimilating reflectivity can improve QPF but the temporal evolution is wrong. It is found that assimilating radial wind and reflectivity to update all model variables is a better assimilation strategy then only updating wind or water-related variables.
Furthermore, due to the limitation from no tangential wind observed by radars, we remove the radial wind in the two radar observation coverage when updating u/v. The improved QC strategies can improve wind field, further improve QPF.
廖浩彥,2014: 利用雷達觀測直接反演氣象變數進行資料同化以改進短期定量降水預報 – 2008 SoWMEX IOP8 個案分析。國立中央大學大氣物理所碩士論文,1 – 89。
陳新淦、黃椿喜、呂國臣、洪景山、張博雄,2014:“發展模式與觀測雷達回波影像比對技術及改善極短期降水預報之研究”,103 年天氣分析與預報研討會論文摘要彙編,A6-3。
邵彥銘,2015:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報:SoWMEX IOP8 個案分析。國立中央大學,大氣物理研究所,碩士論文,共78 頁。
葉世瑄、黃椿喜、陳新淦、呂國臣、洪景山,2015: “極短期定量降水預報技術於梅雨季節之校驗結果”,104 年天氣分析與預報研討會論文摘要彙編,A7-12。
蔡直謙,2014:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)。國立中央大學,大氣物理研究所,博士論文,共71頁。
Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 1805-1824.
──, ──, and ──, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 1273-1292.
Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Wea. Rev., 135, 1090-1108.
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
——, and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.
Berenguer, M., and I. Zawadzki, 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Wea. Forecasting, 23, 1085-1101.
Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder 2011: Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations. Mon. Wea. Rev., 139, 1972-1995.
——, K. R. Fossell, S.-Y. Ha, J. P. Hacker, and C. Snyder, 2015: Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations. Mon. Wea. Rev., 143, 1295-1320.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-436.
Browning, K. A., C. G. Collier, P. R. Larke, P. Menmuir, G. A. Monk, and R. G. Owens, 1982: On the forecasting of frontal rain using a weather radar network. Mon. Wea. Rev., 110, 534-552.
Caine, N., 1980: The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann., 62A, 23-27.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.
Chang, W., K.-S., Chung, L. Fillion and S.-J. Baek, 2014: Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases. Mon. Wea. Rev., 142, 2118-2138.
Davis, C. A., and W.-C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX. J. Atmos. Sci., 69, 512-537, doi:10.1175/JAS-D-11-0120.1.
Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982-2005.
──, L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman Filter Assimilation of Radar Observations of the 8 May 2003 Oklahoma City Supercell: Influences of Reflectivity Observations on Storm-Scale Analyses. Mon. Wea. Rev., 139, 272-294.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.
Gao, J., and M. Xue, 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data. Mon. Wea. Rev., 136, 945-963.
Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 2859-2873.
Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2008: The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5, 3-17.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D, 230, 112-126.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228-2245.
──, M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246-2260.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, New York, NY, USA, 340 pp.
Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A, 38, 97-110.
Lindskog, M., K. Salonen, H. Järvinen, and D. B. Michelson, 2004: Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Rev., 132, 1081-1092.
Liou, Y.-C., 2001: The derivation of absolute potential temperature perturbations and pressure gradients from wind measurements in three-dimensional space. J. Atmos. Oceanic Technol., 18, 577-590.
──, J.-L. Chiou, W.-H. Chen, H.-Y. Yu, 2014: Improving the model convective storm quantitative precipitation nowcasting by assimilating state variables retrieved from Multiple-Doppler radar observations, Mon. Wea. Rev., 142, 4017-4035.
Mandapaka, P. V., U. Germann, L. Panziera, and A. Hering, 2012: Can Lagrangian extrapolation of radar fields be used for precipitation nowcasting over complex Alpine orography?. Wea. Forecasting, 27, 28-49.
Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128, 416-433.
Montmerle, T., and C. Faccani, 2009: Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137, 1939-1953.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, 56, 415-428. Sasaki, Y., 1958: An objective analysis based on the variational method. J. Meteor. Soc. Japan, 36, 77-88.
Patil, D., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality at atmospheric dynamics. Phys. Rev. Lett., 86, 5878-5881.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. National Center for Atmospheric Research, Boulder, CO, USA, 113 pp.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.
Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through Observing System Simulation Experiments. Mon. Wea. Rev., 137, 4011-4029.
Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793-813.
──, and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.
──, M. Xue, J. W. Wilson, I. Zawadzki, S. P. Ballard, J. Onvlee-Hooimeyer, P. Joe, D. Barker, P.-W. Li, B. Golding, M. Xu, and J. Pinto, 2013: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. B. Am. Meteor. Soc., doi: 10.1175/BAMS-D-11-00263.1.
──, and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364-2388.
Tao, W.–K., J. Simpson, and M. McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation forecasting using Doppler radar data, a cloud model with adjoint, and the Weather Research and Forecasting model: Real case studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975-992.
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807.
Tsai, C. C., Yang, S. C., & Liou, Y. C., 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments. Tellus A, 66.
Tu, C.-C., Y.-L. Chen, C.-S. Chen, P.-L. Lin, and P.-H. Lin, 2014: A comparison of two heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) 2008. Mon.Wea. Rev., 142, 2436-2463, doi:10.1175/ MWR-D-13-00293.1.
──, ──, S.-Y. Chen, Y.-H. Kuo, and P.-L. Lin, 2017: Impacts of Including Rain-Evaporative Cooling in the Initial Conditions on the Prediction of a Coastal Heavy Rainfall Event during TiMREX. Mon. Wea. Rev., 145, 253-277, doi: http://dx.doi.org/10.1175/MWR-D-16-0224.1.
Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841-859.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
──, and ──, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078-3089.
——, ——, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463-482.
Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.
Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001-1015.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768-788.
──, and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381-3404.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555-2574, doi:10.1175/ MWR-D-11-00208.1.
Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 46-66.
Yang, S.-C., M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, 2009: Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model. Mon. Wea. Rev., 137, 693-709.
──, S.-H. Chen, S.-Y. Chen, C.-Y. Huang, C.-S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX IOP8. Mon. Wea. Rev., 142, 4139-4163.
Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105-2125.