| 研究生: |
蔡承翰 Cheng-Han, Tsai |
|---|---|
| 論文名稱: |
探索酷熱天氣下之階層頻繁項目–以某超市為例 Discovering Multi-level Frequent Itemsets Under Extremely Hot Weather |
| 指導教授: | 許秉瑜 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 資料探勘 、氣溫 、階層關聯法則 、APRIORI演算法 |
| 外文關鍵詞: | Data Mining, Temperature, Multiple-Level Association Rules, APRIORI |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一直以來企業為了提高商品銷售量通常利用關聯規則探勘技術從交易資料庫中尋找頻繁項目集,判斷「何種商品」經常被一起購買,當該商品組合經常被消費者購買,則表示此商品組合能有效提升消費者之購買意圖。然而,隨著極端酷熱之天數越出頻繁,近幾年來極端氣候對人類生活之影響不斷地嚴重加劇,中央氣象局指出臺灣近年來高溫日數相較於往年大幅增加一倍之多。因此過去方法挖掘之商品組合能否適用於所有氣溫狀況,而極端高溫之條件下是否會出現不同之商品組合即為一當前值得研究之議題。
為了解決上述問題,本研究提出一套新方法,嘗試從階層頻繁項目集中找到酷熱條件下特定出現之商品組合。延續過去關聯規則之概念,有別於以往利用全年交易資料進行關聯分析,本研究加入氣溫作為區間加以分析,希望找出相較於過去研究更為符合酷熱氣溫下之品項購買組合。本研究將顧客交易資料分成高溫、非高溫兩區段,透過改良之APRIORI演算法應用階層關聯規則並藉由獨立樣本T檢定之結果作為篩選條件,保留頻繁項目集中至少包含一銷售量對氣溫具顯著差異商品之組合,最後扣除兩氣溫區間頻繁項目集中重複出現之品項及頻繁項目集中屬相同分類之組合,即可得到足以代表酷熱條件下特定會出現之品項購買組合。
本研究透過上述方法得到15組頻繁項目組合。當得知未來數日將處於連續高溫時,顧客將有很大機會出現本研究結果之品項組合購買習慣。對於零售商而言,即可依據該購買習慣事先制定相應之商品組合促銷等行銷策略,提高顧客來店之購買意願,並達到企業欲提升商品銷售量之目的。
Retailers usually use the Association Rules to find Frequent Itemsets from the transaction database to determine “what products” are often purchased together. However, as the number of extreme hot days increase dramatically, it is important to understand what product combinations are popular during the extreme weather.
Even though some frequent pattern discovering algorithm were designed to find weather related patterns. None of the taking extreme weather into consideration. This study divides customer transaction data into two data sets, High-Temperature and Non-High-Temperature and applies Multiple-Level Association Rules to design an improved algorithm which guarantees that at least one item in the patterns are effected by extreme weathers.
With data coming from a midsize local supermarket, 15 product combinations were identified. The 15 product combinations were purchased frequently in extremely hot days. This finding is useful for making a marketing plan to promote these product combinations in advance.
[1] Germanwatch: Global Climate Risk Index, 2016.
[2] Weather Underground: 2002-2017年之高溫天數統計,2017.
[3] P. Guiltinan, J., The Price Bundling of Services: A Normative Framework. Vol. 51. 1987.
[4] Garfinkel, R., et al., Design of a shopbot and recommender system for bundle purchases. Decision Support Systems, 2006. 42(3): p. 1974-1986.
[5] EMC, Digital Universe, 2014, http://www.emc.com
[6] Srikant, R.A.a.R., Fast Algorithms for Mining Association Rules. Proceedings of the 20th International Conference on Very Large Data Bases, 1994: p. 487-499.
[7] Friedhelm Schwarz ,Climate Economy, 2006.
[8] Bertrand, J.-L., X. Brusset, and M. Fortin, Assessing and hedging the cost of unseasonal weather: Case of the apparel sector. Vol. 243. 2015. 345-363.
[9] Youngjin, B. and K.D. H., The relationship between temperature and sales: Sales data analysis of a retailer of branded women's business wear. International Journal of Retail & Distribution Management, 2012. 40(6): p. 410-426.
[10] Murray, K.B., et al., The effect of weather on consumer spending. Journal of Retailing and Consumer Services, 2010. 17(6): p. 512-520.
[11] Ramanathan, U. and L. Muyldermans, Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK. International Journal of Production Economics, 2010. 128(2): p. 538-545.
[12] Divakar, S., B.T. Ratchford, and V. Shankar, CHAN4CAST: A Multichannel, Multiregion Sales Forecasting Model and Decision Support System for Consumer Packaged Goods. Marketing Science, 2005. 24(3): p. 334-350.
[13] Parsons, A.G., The Association Between Daily Weather and Daily Shopping Patterns. Australasian Marketing Journal (AMJ), 2001. 9(2): p. 78-84.
[14] Steele, A.T., Weather's Effect on the Sales of a Department Store. Journal of Marketing, 1951. 15(4): p. 436-443.
[15] Reder, M., N.Y. Yürüşen, and J.J. Melero, Data-driven learning framework for associating weather conditions and wind turbine failures. Reliability Engineering & System Safety, 2018. 169: p. 554-569.
[16] Fernandez-Arteaga, V., et al., Association between completed suicide and environmental temperature in a Mexican population, using the Knowledge Discovery in Database approach. Computer Methods and Programs in Biomedicine, 2016. 135: p. 219-224.
[17] Srikant, R. and R. Agrawal, Mining generalized association rules. Future Generation Computer Systems, 1997. 13(2): p. 161-180.
[18] Hong, T.-P., K.-Y. Lin, and S.-L. Wang, Fuzzy data mining for interesting generalized association rules. Fuzzy Sets and Systems, 2003. 138(2): p. 255-269.
[19] Chen, M.C. and C.P. Lin, A data mining approach to product assortment and shelf space allocation. Expert Systems with Applications, 2007. 32(4): p. 976-986.
[20] Kyun, D.M., S.Y. Sohn, and J.S. Kim, Multi-level association rules for MP3P marketing strategies based on extensive marketing survey data. Expert Systems with Applications, 2009. 36(9): p. 11582-11588.
[21] Tseng, V.S., H.H. Yu, and S.C. Yang, Efficient mining of multilevel gene association rules from microarray and gene ontology. Information Systems Frontiers, 2009. 11(4): p. 433-447.
[22] Manda, P., F. McCarthy, and S.M. Bridges, Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships. Journal of Biomedical Informatics, 2013. 46(5): p. 849-856.
[23] Dhar, V. and A. Tuzhilin, Abstract-Driven Pattern Discovery in Databases. IEEE Trans. on Knowl. and Data Eng., 1993. 5(6): p. 926-938.
[24] Silberschatz, A. and A. Tuzhilin, What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering, 1996. 8(6): p. 970-974.
[25] Han, J., L.V.S. Lakshmanan, and R.T. Ng, Constraint-Based, Multidimensional Data Mining. Computer, 1999. 32(8): p. 46-50.
[26] Bayardo, R.J., R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large, dense databases. in Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337). 1999.
[27] Wang, K., Y. He, and J. Han, Mining Frequent Itemsets Using Support Constraints, in Proceedings of the 26th International Conference on Very Large Data Bases. 2000, Morgan Kaufmann Publishers Inc. p. 43-52.
[28] Grahne, G., L.V.S. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. in Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073). 2000.
[29] Lakshmanan, L.V.S., et al., Optimization of constrained frequent set queries with 2-variable constraints. SIGMOD Rec., 1999. 28(2): p. 157-168.
[30] 孫明貴,銷售物流管理——現代物流管理叢書,2005.