| 研究生: |
陳麒任 Chi-Jen Chen |
|---|---|
| 論文名稱: |
ZK60鎂合金顯微組織與機械性質研究 Microstructure and mechanical properties of ZK60 magnesium alloy |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | ZK60 、鎂合金 |
| 外文關鍵詞: | ZK60, magnesium alloy |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討耐溫型鎂合金之顯微組織及機械性質。選取目前較受矚目之ZK60鎂合金(Mg-6%Zn-0.5%Zr)為研究對象,利用熱擠製、軋延等塑變加工,配合熱機處理製程技術,嘗試獲得微細晶粒的ZK60鎂合金板材,進而達到超塑性。
研究方法,實際進行方式,係由中科院之豎型直接激冷式(Vertical Direct Chill Type)連鑄機製作成8"之ZK60鎂錠,再於380℃高溫下擠製成為6mm之板材。以加熱之軋延機進行不同軋延率(20%、40%、及60%)、軋延溫度(300℃、350℃、400℃、450℃)、退火溫度等參數對片材顯微組織及機械性質的影響。
經實驗結果顯示當軋延率20%金相組織呈現纖維狀的組織且在晶粒內部發現少數的雙晶組織,當軋延率達40%雙晶現象更為明顯且有少數的動態在結晶沿高能量的晶界,60%時有更明顯的動態再結晶,其餘晶粒仍呈現嚴重的纖維狀結構,所以需進行靜態退火消除。當軋延溫度350℃經軋延率60%後在經265℃×16hrs以及365℃×1hr等退火後金相組織呈現細小且等軸晶粒其晶粒大小分別8.3μm及7.7μm,其抗拉強度分別為294.8Mpa及302Mpa。
最後將軋延溫度350℃的軋延率繼續提升到80%且在進行265℃×16hrs的退火處理後可獲得均勻經歷大小為3.7μm且極細的金相組織。
This research probes into the microstructure and mechanical properties on the heat resistance magnesium alloy . Choose the ZK60 magnesium alloy (Mg-6% Zn-0.5% Zr) relatively attracting attention at present research object. In order to obtain fine grain size on ZK60 magnesium alloy, making use of plastic deformation such as hot extrusion 、hot rolling etc plus TMT(thermo mechanical treatment) technique .
Experimental procedures , the alloy was prepared by Vertical Direct chill casting into an 8” ingot in Chung-Shan institute of science&technology. It was then followed by an extrusion at 380℃to obtain a 6 ㎜ sheet material. This as-extruded state was processed next in various rolling reduction ratio(20%、40%、60%、80%)、rolling temperature (300℃、350℃、400℃、450℃) and annealing temperature to observe the affection of microstructure and mechanical properties on this alloy.
Shown by the experimental result , for rolling reduction of 20%, it is showed fiber structure and some twins within crystalline. for rolling reduction of 40%, it is showed much higher density of twins and dynamic re-crystallizing grain go along grain boundaries. for rolling reduction of 60%,it is showed much higher density of dynamic re-crystallizing. Other crystalline grain still present the serious fibrous structure. So we need to take it away by. After rolling temperature 350℃and rolling reduction of 60% then followed by 265℃×16hrs and 365℃×1hr annealing , the grain size is 8.3μm and 7.7μm respectively, the ultimate tensile strength is 294.8Mpa and 302Mpa respectively.
Finally, for rolling temperature 350℃and rolling reduction of 60% then followed by 265℃×16hrs annealing, a fine grain structure was obtained, the grain size of the structure is 3.7μm.
[1] K. Saitoh, Mater. Jpn. 38(1999) p.321-324.
[2] I.J. Polmear, Mater. Sci. Technol. 10(1994) p.1-16.
[3] F. Czewinski, A. Zielinska-Lipiec, P.J. Oinet, J. Overbecke, Acta Mater. 49(2001) p.1225-1235.
[4] Knut J Schemme, OTTO FUCHS Metallwerke Meinerzhagen" Magnesium alloys and their applications", Germany, 1998.2000
[5] J. Becker, G. Fischer, K. Schemme,:Magnesium Alloys and their Applications, ed. by B. L. Mordike and K. U. Kainer (Wolfsburg, Germany, 1998) p.15-28.
[6]T. Mukai, K. Ishikawa and K. Higashi, "Influence of Strain Rate on the Mechanical Properties in Fine –Grained Aluminum Alloys", Mater. Sci. Eng. A204, 1995, p.12-18.
[7]M. Furukawa , Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, "Microhardness Measurement and the Hall-Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size", Acta Mater.,44, 1996, p.4619-4629.
[8]T. G. Langdon, "Superplastic in Ultrafine-Grained Materials", Key Eng. Mater. , 97-98, 1994, p.109-124.
[9] 張榮桂,"利用往復式擠型製作超塑性AZ91鎂合金之研究",國立清華大學材料科學工程研究所碩士論文,2000.
[10]R.Matsumoto, K. Osakada, Mater. Trans. 45(2004) p.2838-2844.
[11]H. Somekawa, M. Kohzu, S. Tanabe, K. Higashi, Mater. Sci. Forum 350-351(2000) p.177-182.
[12]A. Takara, Y. Nishikawa, H.Watanabe, H. Somekawa,, T. Mukai, K. Higashi, Mater. Trans. 45(2004) p.2531-2536.
[13]ASM Speciality Handbook, “Magnesium and Magnesium Alloys”, ASM International, (1999).
[14]Norsk Hydro Databank, Norsk Hydro Research Center Porsgrunn, 1996.
[15]Cahn RW, Haasen P, Kramer EJ(ed). Material Science and Technology A Comprehensive TREATMENT in Matucha KH(ed). Structure and Properties of Nonferrous Alloys (Vol118), Weinheim, VCH, 1996.
[16]Jona F, Marcus P M. Magnesium under Pressure, Structure and Phase Transition . J Phys Condens Matter, 2003, 15, 7727.
[17]R. W. Cahn, P. Haasen and E. J. Kramer, Materials Science and Technology , Structure and Properties of Nonferrous Alloys, 8(1996) p. 131.
[18]Shigeharu Kamado , 日本鎂合金工業現況及研究趨勢,台灣鎂合金協會,(2001)60。
[19]ASM 「Metallography, Structure and Phase Diagram」,Metals Handbook 8th Edition, Vol. 8, p.316.
[20]Kainer KU,Bach F Von. The Current State of Technology and Potential for Further Development of Magnesium Applications .In Kainer KU(ed). Kaiser F(trans). Magnesium Alloys and Technology ,Weinheim: WILEY-VCH Verlag Gmbh, 2003.
[21] M. Mabuchi, H. Iwasaki and K. Higashi ”Microstructure and mechanical properties of 5056 Al alloy processed by Equal-channel angular extrusion”, Nanostructured Mater. 8(1997),1105.
[22]M. Kawazoe, T. Shibata, T. Mukai and K. Higashi, ”Elevated temperature mechanical properties of A5056 Al-Mg alloy processed by Equal-channel-angular-extrusion”, Scripta Mater., 36(1997),p.699.
[23]R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, ”Bulk nanostructured materials from severe plastic deformation”, Progress in Materials Science, 45(2000),p.103.
[24]李明富,利用ECAE 方法發展次微米晶粒材料之研究,中山大學碩士論文(1997),p.5-6.
[25]J. Becker, G. Fischer, K. Schemme,:Magnesium Alloys and their Applications, ed. by B. L. Mordike and K. U. Kainer (Wolfsburg, Germany, 1998) p.195-200.
[26]P. B. Berbon, N. K. Tsenev, R. Z. Valie, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langond, ”Fabrication of bulk ultrafine-grained materials through intense plastic straining”, Metall. and Mater. Trans. A, 29A(1998), 2237.
[27]M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, ” Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE”, Scripta Materialia, 36(1997), p.681.
[28]蔡東霖, 利用ECAE及退火處理細化鋁鎂合金晶粒,中山大學碩士論文(1998).
[29]G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8 VCH (1996), p.113.
[30]林文樹、梁銘儉、劉曉嶺、翁世樂、王文樑、黃登淵、王良泉、蔡幸甫等著,塑性加工學,三民書局,p. 349-356。
[31]Robert E. Reed-Hill, Reza Abbaschian, “PHYSICAL METAL LURGY PRINCIPLES”, THIRD EDITION (1973), p.227-271.
[32]J. C. Li, ,Appl., J. Phys., 33 2958 (1962).
[33]Y. Chino, K. Shimojima, H. Hosakawa, et al. Effect of Microstructures on the Mechanical Properties for Forged Mg Alloys, Advanced Technology of Plasticity 2002 7th ICTP. The Japan Society for Technology of Plasticity 2002 10.
[34]H. Watanabe, T. Mukai and K. Higashi: Scripta Mater., 40, (1999),p477
[35]T. C. Chang et al., Journal of materials processing Technology 140 (2003) p.588-591.
[36]B. M. Closset et al., Conference Magnesium Alloys and their Applications, April 28-30, 1998, Wolfburg, Germany.
[37]A. Galiyev, R. Kaibyshev, Scripta Materialia 51 (2004) p.89-93.
[38]A. Galiyev and R. Kaibyshev, Maer. Sci. Forum 467-470(2004) p.1175-1180.
[39] H. Watanabe, T. Mukai a, K. Ishikawa a, K. Higashi, Scripta Materialia 46(2002) p.851-856.
[40] Roberto B. Figueiredo, Terence G. Langdon, Maer. Sci. Eng. A, 430(2006) p.151-156.
[41] R. Lapovok, P.F. Thomson, R. Cottam, Y. Estrin, Maer. Sci. Eng. A, 410-411(2005) p.390-393.
[42] S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, Y.P. Zhu,Mater. Sci. Eng. A 433 (2006) p.175–181.