跳到主要內容

簡易檢索 / 詳目顯示

研究生: 杜承恩
Cheng-en Du
論文名稱: 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
External Cavity Diode Laser Using Volume Bragg Grating as Laser Mirror
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 半導體雷射外腔式雷射體積全像布拉格光柵
外文關鍵詞: External cavity laser, Diode laser, Volume Bragg Grating
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文先介紹目前氬離子雷射(波長為488 nm)的應用,並引入利用半導體雷射搭配頻晶體可將波長轉換至可見光波段來取代氬離子雷射的構想,然而一般的近紅外光半導體雷射為了追求高輸出功率使得其雷射的光學品質極差(多縱模,且具有高階橫向模態),搭配倍頻晶體後其轉換效率極差,若要提高其轉換效率,則雷射需具有好的光學品質(單縱模,M2~1)。
    為了改善半導體雷射的光學品質,本論文使用一個新的光學元件---體積全像布拉格光柵(Volume Bragg Grating, VBG),利用其同時具有波長選擇及橫向模態選擇的特性作為半導體雷射的輸出耦合鏡,來改善半導體雷射的光學品質。
    本實驗以976 nm的邊射型半導體雷射做為雷射增益介質設計出三個外腔式共振腔形式:線型外腔式共振腔以體積全像布拉格光柵(VBG)作為其輸出耦合鏡;V型外腔式共振腔,以1083 nm VBG同時作為波長選擇及橫向模態選擇器,並以976 nm VBG作為輸出耦合鏡;V型雙VBG外腔式共振腔,以976 nm VBG作為波長選擇器,1083 nm VBG作為橫向模態選擇器,並以平面鏡做為輸出耦合鏡。
    使用不同的光學儀器量測各結構下雷射的特性,藉由光譜儀及Fabry-Perot干涉儀測得雷射輸出波長為976.64 nm,FWHM約為28 pm,並且其量測到的M-square 快軸方向從5.38改善至1.24,慢軸方向可從14.81改善至3.09。


    This thesis describes argon ion laser (wavelength is 488 nm) applications, and the introduction of the use of diode laser with a nonlinear crystal can convert emission wavelength to visible light to replace the concept of argon ion laser. The general near-infrared diode laser can have high power but the optical quality is very poor (multi-longitudinal modes and multi-transverse modes). Conversion efficiency is lower when laser coupled into nonlinear crystal. In order to improve its conversion efficiency, diode laser should have a good optical quality (single longitudinal mode, M2 ~ 1). This thesis uses a new optical component -- volume holographic Bragg grating (VBG).
    In this thesis used the 976 nm edge-emitting diode laser as the laser gain medium and VBG is wavelength selector and transverse mode filter at the same time. The design of the three external cavity types: linear external cavity which VBG as the output coupler; V-shaped external cavity which used 1083 nm VBG at the same time as the wavelength selector and transverse mode selector, and 976 nm VBG as an output coupler; V-shaped dual external cavity which used 976 nm VBG as a wavelength selector, 1083 nm VBG at the same time as the wavelength selector and transverse mode selector and the plane mirror as the output coupler.
    The experiment result is got output power which is 31.4 mW, wavelength can be locked at 976.64 nm, FWHM about 28 pm, M-square for fast axis is 1.24, and M-square for slow axis is 3.09.

    摘要................................................................................................................I Abstract ........................................................................................................ II 致謝.............................................................................................................IV 目錄..............................................................................................................V 圖目錄........................................................................................................VII 第一章 緒論................................................................................................. 1 1.1 實驗動機............................................................................................................1 1.2 半導體雷射簡介................................................................................................5 1.3 單縱模半導體雷射............................................................................................8 1.3.1 分佈反饋半導體雷射(DFB Laser) ......................................................8 1.3.2 分佈布拉格反射鏡半導體雷射(DBR Laser)....................................10 1.3.3 垂直共振腔面射型半導體雷射(VCSEL) .........................................12 1.4 單橫模半導體雷射..........................................................................................15 第二章實驗原理....................................................................................... 19 2.1 半導體雷射特性..............................................................................................19 2.1.1 半導體雷射輸出功率特性.................................................................20 2.1.2 半導體雷射輸出橫向模態(空間模態)特性......................................22 2.1.3 半導體雷射輸出縱向模態特性.........................................................26 2.2 體積全像布拉格光柵工作原理......................................................................30 2.2.1 體積全像布拉格光柵架構.................................................................30 2.2.2 體積全像布拉格光柵原理.................................................................33 2.3 法布里-珀羅干涉儀工作原理......................................................................42 2.4 量測雷射橫向模態M-square 的工作原理....................................................48 第三章實驗架構....................................................................................... 52 3.1 線型外腔式共振腔........................................................................................52 3.2 V 型外腔式共振腔........................................................................................54 3.3 V 型雙VBG 外腔式共振腔.........................................................................56 第四章數據分析....................................................................................... 58 4.1 半導體雷射特性..............................................................................................58 4.1.1 固定溫度情況下.................................................................................58 4.1.2 固定輸入電流情況下.........................................................................60 4.1.3 半導體雷射的縱模.............................................................................61 4.2 不同共振腔架構之比較..................................................................................63 4.2.1 線型外腔式共振腔.............................................................................63 4.2.2 V 型外腔式共振腔.............................................................................70 4.2.3 V 型雙VBG 外腔式共振腔..............................................................74 4.3 VBG 角度選擇性與雷射橫向模態之分析..................................................79 第五章結論與未來展望........................................................................... 83 5.1 結論..................................................................................................................83 5.2 未來展望..........................................................................................................84 Reference..................................................................................................... 85

    Reference
    [1] http://en.wikipedia.org/wiki/Confocal_microscopy
    [2] A. V. Shchegrov et al., “488nm coherent emission by intracavity
    frequency doubling of extended cavity surface-emitting diode lasers”
    Proc. SPIE, vol. 4994, p. 197 (2003)
    [3] http://www.lumics.com/fileadmin/user_upload/pdf_Umount/LU09x
    xU120.pdf
    [4] 余兆陞,”以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製
    程研究”中央大學碩士論文,DOP(2007)
    [5] L.Glebov, Invited Paper: “Volume Bragg Gratings in PTR Glass
    --New Optical Elements for Laser Design”, 23rd Advanced
    Solid-State Photonics (ASSP) Topical Meeting. ASSP Technical
    Digest, Paper Code MD1, Nara, Japan, January 2008
    [6] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
    ,CH.5 P.85(2004)
    [7] Schubert, E. Fred. “Light-emitting Diodes”,CH.4 P.67(2003)
    [8] Ye, Cunyun.; Wei, Tjan Kwang. “Tunable External Cavity Diode
    Laser”, CH.3 P.31(2004)
    [9] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
    ,CH.6 P174(2004)
    [10] Y. Nakano, Y. Luo, and K. Tada: “Facet reflection independent,
    single longitudinal mode oscillation in a GaAlAs/GaAs distributed
    feedback laser equipped with a gain-coupling mechanism,” Appl.
    Phys. Lett. 55, 1606 (1989)
    [11] Ghafouri-Shiraz, H. “Distributed Feedback Laser Diodes and
    Optical Tunable Filters”,CH.2 P58(2003)
    [12] Amnon Yariv, Pochi Yeh “photoncis Optical Electronics in Modern Communications” sixth edition
    [13] http://vcsel-www.pi.titech.ac.jp/news/coeadpro.html
    [14] http://ceolaser.ru/silver-bullet-laser-diode-array-submodules.html
    [15] http://lumicslaser.com/fileadmin/user_upload/pdf_single_mode/
    LU0980M430.pdf
    [16] S.O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys,
    “2.2-W continuous-wave , diffraction-limited monolithically
    Integrated master oscillator power amplifier at 854 nm,” IEEE
    Photon. Technol. Lett., vol. 9, pp. 440–442, Apr. 1997.
    [17] http://gorgia.no-ip.com/phd/html/thesis/phd_html/node4.html
    [18] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
    ,CH.5 P.85(2004)
    [19] Schubert, E. Fred. “Light-emitting Diodes”,CH.4 P.67(2003)
    [20] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
    [21] Walter Koechner, Michael Bass “Solid-State Lasers”
    [22] D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
    [23] http://en.wikipedia.org/wiki/Fiber_Bragg_grating
    [24] Stephane Santran, Miguel Martinez-Rosas “Nonlinear refractive
    index of photo-thermo-refractive glass”, Optical Materials 28 (2006) 401–407
    [25] Yariv Yeh. “Optical wave in crystals”,CH.6
    [26] H. Kogelnik, “Coupled wave theory for thick hologram grating,”
    Bell Sys.Technol. J. 48, 2909-2947 (1969).
    [27] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
    [28] http://en.wikipedia.org/wiki/Fabry-Perot_Interferometer
    [29] http://en.wikipedia.org/wiki/Transverse_mode
    [30] http://www.lumics.com/fileadmin/user_upload/Datasheets_Lumics
    _Products/Multimode/Umount/LU09xxU120.pdf

    QR CODE
    :::