跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建中
Chien-chung Chen
論文名稱: 正交分頻多重接取上鏈系統與干擾之載波頻率偏移估測
Carrier Frequency Offset Estimation with Interference for OFDMA Uplink Systems
指導教授: 陳永芳
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 46
中文關鍵詞: 異質網路正交分頻多重接取系統(OFDMA)載波頻率偏移(CFO)旋轉不變性技術估計信號參數(ESPRIT)平滑技術(Smoothing technique)Cramér-Rao Bound
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在最近幾年,無線蜂窩網路系統的普及使得對更高容量和數據傳輸速率的需求日益增加,異質網路系統因應而生。而載波頻率偏移(CFO)一直是正交分頻多重接取(OFDMA)上鏈系統中一個具有挑戰性的問題,其肇因為都普勒偏移亦或傳輸與接收之間震盪器不匹配,進而引發載波間干擾(ICI)與多重接取干擾(MAI),導致系統效能嚴重衰減。
    在本篇論文中,我們模擬異質網路的環境,利用正交分頻多重接取系統(OFDMA),進行載波頻率偏移估測。我們提出一個具有抗干擾能力的載波頻率偏移估測方法,我們經由旋轉不變性技術估計信號參數(ESPRIT)與平滑技術(Smoothing technique)進行估測。在模擬結果中也驗證了這個方法的效能且估測結果接近Cramér-Rao Bound。


    In recent years, the increase in popularity of wireless cellular networks makes the rising demand for higher capacity and data rate. This change results in Heterogeneous networks emergency. In this proposed method, heterogeneous network environments in orthogonal frequency division multiple access (OFDMA) are constructed for the simulation to verify the efficacy of the proposed scheme. We proposed a carrier frequency offset (CFO) estimation algorithm with strong interference resistant capability for OFDMA systems. We use the rotational invariance technique (ESPRIT) and smoothing techniques as our estimator. In the simulation results, they demonstrate the effectiveness of this method and the results are close to Cramér-Rao Bounds.

    Abstract III 致謝 IV Contents V List of Figures VII List of Tables VIII 1. Introduction 1 2. System Model 7 2.1 Interleaved Subcarrier Assignment Scheme 7 2.2 OFDM-Based Multiple-Access OFDMA 8 2.3 Single-User Signal with Interference Structure and Effective CFO 13 2.4 Multiple-User Signal with Interference Structure 16 3. Proposed Method 18 3.1 CFO Estimation with Interference Resistant 18 3.2 Applying Smoothing Technique 21 3.3 CFO Estimation with Interference Using ESPRIT 22 3.4 The CRB of CFO Estimation 26 4. Simulation Results 29 4.1 Simulation Parameters for OFDMA Uplink System 29 4.2 Algorithm Performance 32 5. Conclusion 38 6. Reference 40

    [1] A. Damnjanovic, J. Montojo, W. Yongbin, J. Tingfang, L. Tao, M. Vajapeyam, Y. Taesang, S. Osok, and D. Malladi, "A survey on 3GPP heterogeneous networks," IEEE Wireless Commun., vol.18, no.3, pp.10-21, Jun. 2011.
    [2] Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent Advances in Radio Resource Management for Heterogeneous LTE/LTE-A Networks,” IEEE Commun. Surveys and Tutorials, vol. 16, no. 4, pp. 2142-2180, Jun. 2014.
    [3] A. BouSaleh, S. Redana, B. Raaf, and J. Hämäläinen, “Comparison of relay and pico eNB deployments in LTE-advanced,” in Proc. IEEE VTC-FALL, pp.1-5, 20-23, Sep. 2009.
    [4] M. Morelli, “Timing and frequency synchronization for the uplink of an OFDMA system,” IEEE Trans. on Commun., vol. 52, pp. 296–306, Feb. 2004.
    [5] Z. Cao, U. Tureli and Y. Yao, “Deterministic Multiuser Carrier-Frequency Offset Estimation for Interleaved OFDMA Uplink,” IEEE Trans. on Commun., vol. 52, no. 9, pp. 1585-1594, Sep. 2004.
    [6] Kuang, J. Lu, Z. Ni and J. Zheng, “Non-pilot-aided carrier frequency tracking for uplink OFDMA systems,” in Proc. IEEE Inter. Conf. on Commun., vol. 6, pp. 3193-3196, Jun. 2004.
    [7] M. Hua and J. Zhu, “Blind estimation of frequency offset and time delay in uplink OFDMA,” in Proc. Vehicular Technology Conf., vol. 61, pp. 1094–1099, Jun. 2005.
    [8] J. van de Beek, P. O. Borjesson, M. Boucheret, D. Landstrom, J. M. Arenas, P. Odling, C. Ostberg, M. Wahlqvist and S. K. Wilson, “Time and frequency synchronization scheme for multiuser OFDM,” IEEE J. Select. Areas Commun., vol. 17, no. 11, pp. 1900-1914, Nov. 1999.
    [9] H. Wang, Q. Yin, L. Ding and K. Deng, “Multiuser Carrier Frequency Offset Estimation for OFDMA Uplink with Generalized Carrier Assignment Scheme,” IEEE GLOBECOM Conf., vol. 8, no. 7, pp. 3347-3353, Jul. 2009.
    [10] Z. Wang, Y. Xin, and G. Mathew, “Iterative Carrier-Frequency Offset Estimation for Generalized OFDMA Uplink Transmission,” IEEE Trans. on Commun., vol. 8, no. 3, pp. 1373-1383, Mar. 2009.
    [11] L. Liu, Y. Guan, G. Bi and D. Shao, “Effect of Carrier Frequency Offset on Single-Carrier CDMA With Frequency-Domain Equalization,” IEEE Trans. on Vehicular Technology, vol. 60, no. 1, pp. 174-184, Jan. 2011.
    [12] P. Sun, M. Morelli and L. Zhang, “Carrier Frequency Offset Tracking in the IEEE 802.16e OFDMA Uplink,” IEEE Trans. on Commun., vol. 9, no. 12, pp.3613-3619, Dec. 2010.
    [13] F. E. M. Suliman, N. M. Elhassan and T. A. Ibrahim, “Frequency Offset Estimation and Cell Search Algorithms for OFDMA Based Mobile WiMAX,” ICACT Trans. On Advanced Commn. Technology, vol. 1, no. 1 pp.26-32, Jul. 2012.
    [14] B. Ranjha, M. I. Sakib Chowdhury, and M. Kavehrad, “Interference Analysis of Interleaved and Localized Mapping Schemes in OFDMA System with Carrier Frequency Offset,” IEEE Conf. on Military Commun, pp. 1-6, Nov. 2013.
    [15] H. C. Nguyen, E. de Carvalho and R. Prasad, “Multi-User Interference Cancellation Schemes for Carrier Frequency Offset Compensation in Uplink OFDMA,” IEEE Trans. On Commun., vol. 13, no. 3, pp. 1164-1171, Mar. 2014.
    [16] M.-O. Pun, S.-H. Tsai, and C.-C. J. Kuo, “Joint maximum likelihood estimation of carrier frequency offset and channel in uplink OFDMA systems,” in Proc. IEEE GLOBECOM Conf., vol. 6, pp. 3748–3752, Dec. 2004.
    [17] J. Lee, S. Lee, Keuk-Joon Bang, S. Cha, and D. Hong, “Carrier Frequency Offset Estimation Using ESPRIT for Interleaved OFDMA Uplink Systems,” IEEE Trans. on Vehicular Technology, vol. 56, no. 5, pp. 3227-3231, Sep. 2007.
    [18] R. Roy and T. Kailath, “ESPRIT─Estimation of signal parameters via rotational invariance techniques,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984-995, Jul. 1989.
    [19] P. Stoica and R. Moses, Introductions to Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [20] T.-J. Shan, M. Wax, and T. Kailath, “On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 806-811, Aug. 1985.
    [21] P. Stoica and A. Nehorai, “MUSIC, Maximum Likelihood, and Cramer-Rao Bound,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no. 5, pp. 720-741, May 1989.
    [22] S. V. Lohar and A. R. Khedkar, “A novel subcarrier-power assignment scheme for OFDMA systems,” in Proc. Computing and Networking Tech., Signal Proce., pp. 295–300, Jul. 2011.
    [23] B. Ai, Z. Yang, C. Pan; J. Ge, Y. Wang and Z. Lu, “On the synchronization techniques for wireless OFDM systems,” IEEE Trans. on Broadcas.,vol. 52, pp. 236-244, Jun. 2006.
    [24] Z. Cao, U. Tureli and Y. Yao, “Low-complexity orthogonal spectral signal construction for generalized OFDMA uplink with frequency synchronization errors,” IEEE Trans. on Veh. Technol., vol. 56, pp. 1143-1154, May 2007.
    [25] Y.-F. Chen and Chi, S.S., “A RAKE receiver design for WCDMA FDD uplink with an RLS-based adaptive beamforming scheme,” IEEE Trans. on Vehicular Technology, vol. 54, no. 2, pp. 508-515, Mar. 2005.
    [26] M. Wax, and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 33, no. 2, pp. 387-392, Apr. 1985.
    [27] S. Haykin, Adaptive Filter Theorem, 4th ed., NJ: Prentice Hall, 2002.
    [28] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. 2: Estimation Theory, NJ: Prentice Hall, 1993
    [29] D. G. Manolakis, V.K. Ingle, and S.M. Kogon, Statistical and Adaptive Signal Processing, NJ: McGRAW-Hill International Editions, 2000.
    [30] Proakis and Salehi, Essentials of Communication Systems Engineering, NJ: Prentice Hall, 2005.

    QR CODE
    :::