跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃昱翔
Yu-Siang Huang
論文名稱: 應用於太赫茲通訊之 40 奈米互補式金氧半二倍頻器設計
Frequency Doublers Design in 40-nm CMOS for THz Communication Applications
指導教授: 傅家相
Jia-Shiang Fu
李俊興
Chun-Hsing Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 太赫茲波毫米波二倍頻器振幅偏移調變器發射機
外文關鍵詞: THz wave, mm wave, doubler, modulator, transmitter
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個應用在340-GHz無線收發機的170-GHz二倍頻器以及應用在200-GHz無線發射機中的100-GHz二倍頻器與200-GHz振幅偏移調變器,本次電路使用TSMC 40奈米互補式金氧半導體製程來實現。170-GHz二倍頻器使用current reuse架構來進行設計,訊號經由170-GHz放大器放大訊號後再由170-GHz二倍頻器將頻率從170-GHz倍頻至340-GHz,170-GHz放大器使用交叉耦合電容提高增益,最後在170-GHz二倍頻器汲極輸出340-GHz訊號,輸出功率達到-7.8 dBm,此時最大轉換增益為-14 dB。
    關於100-GHz二倍頻器架構上採用差動輸入對電晶體來實現,最後在100-GHz二倍頻器汲極輸出200-GHz訊號,輸出功率達到2.3 dBm,此時最大轉換增益為-7.6 dB。200-GHz無線發射機架構由100-GHz壓控振盪器產生100-GHz訊號,此時輸出功率為-3.5 dBm,透過100-GHz緩衝器以及100-GHz放大器提高增益後再由100-GHz功率放大器放大功率,此時在100-GHz高輸出功率的情況下驅動100-GHz二倍頻器將頻率倍頻至200-GHz,此處為200-GHz振幅偏移調變器藉由20-Gbps數位訊號來控制振幅偏移調變器來進行調變,數位訊號輸入端為了避免波形失真串聯四級反相器後接上200-GHz振幅偏移調變器,200-GHz調變器的損耗與隔離度分別為3.3 dB與20.2 dB,調變後Post-simulation模擬結果輸出功率0.3 dBm至200-GHz介質共振天線輻射發射,此天線增益為-1.2 dBi,整體200-GHz無線發射機頻寬為6.2 %(193.2-GHz~205.6-GHz),功耗為230 mW。


    This thesis presents a 170-GHz frequency doubler, a 100-GHz frequency doubler, and a 200-GHz ASK modulator in 40-nm CMOS process. The 170-GHz frequency doubler which is designed with current reuse technique contains a differential amplifier and a frequency doubling NMOS pair. The differential amplifier is used to provide higher gain and the frequency doubling NMOS pair is used to generate second order harmonic signal. This 170-GHz frequency doubler can provide -7.8 dBm output power with the maximum conversion gain of -14 dB.
    Both 100-GHz frequency doubler and 200-GHz ASK modulator are applied to 200-GHz transmitter with ASK modulation. The 200-GHz transmitter consists of a 100-GHz voltage-controlled oscillator, buffers, a power amplifier, a frequency doubler, a 200-GHz ASK modulator, and an antenna. The 100-GHz frequency doubler achieves 2.3 dBm output power with the maximum conversion gain of -7.6 dB, which can maximize second order harmonic generation with a differential NMOS pair. The insertion loss of the ASK modulator is 3.3 dB and isolation of the ASK modulator is 20.2 dB. The 100-GHz oscillator and buffers achieve output power of -3.5 dBm. The signal at 200-GHz modulated by 20-Gbps digital data is transmitted to the antenna. The output power of this 200-GHz transmitter is 0.3 dBm. The bandwidth of this 200-GHz transmitter is 6.2 % (193.2-GHz~205.6-GHz) and total consumption of this 200-GHz transmitter is 230 mW.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 THz通訊應用 1 1.2 二倍頻器架構介紹 4 1.3 研究動機 7 1.4 論文架構 8 第二章 170-GHz二倍頻器 9 2.1 系統架構 9 2.2 170-GHz二倍頻器 10 2.3 電路設計與分析 12 2.3.1 負載推移原理 12 2.3.2 變壓器原理 14 2.3.3 放大器及交叉耦合電容原理 15 2.3.4 二倍頻器原理 17 2.4 設計與佈局考量 22 2.5 模擬結果與討論 25 2.6 總結 31 第三章 100-GHz二倍頻器與 200-GHz ASK調變器 32 3.1系統架構 32 3.2 100-GHz二倍頻器 33 3.2.1 電路設計與分析 34 3.2.2 設計與佈局考量 36 3.2.3 模擬結果與討論 38 3.3 200-GHz振幅偏移調變器 43 3.3.1 電路設計與分析 44 3.3.2 設計與佈局考量 51 3.3.3 模擬結果與討論 51 3.4 200-GHz發射機整體結果 58 3.4.1模擬結果與討論 59 3.4.2量測架設考量 61 3.5總結 63 第四章 總結與未來發展 64 4.1 總結 64 4.2 未來發展 65 參考文獻 66

    [1] H. Jalili and O. Momeni, “A 318-to-370GHz standing-wave 2D phased array in 0.13μm
    BiCMOS,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 310-311, 2017.
    [2] S. H. Baek, H. B. Lim, and H. S. Chun, “Detection of Melamine in foods using terahertz
    time-domain spectroscopy,” J. Agricultural Food Chemistry, vol. 62, no. 24, pp. 5403
    5407, 2014.
    [3] K. B. Cooper et al., “THz imaging radar for standoff personal screening,” IEEE Trans.
    Terahertz Science Technol., vol. 1, no. 1, pp. 169-182, Sep. 2011.
    [4] S. H. Baek, H. B. Lim, and H. S. Chun, “Detection of Melamine in foods using terahertz
    time-domain spectroscopy,” J. Agricultural Food Chemistry, vol. 62, no. 24, pp. 5403
    5407, 2014.
    [5] M. B. Dayanik and M. P. Flynn, "Digital Fractional-N PLLs Based on a Continuous-Time
    Third-Order Noise-Shaping Time-to-Digital Converter for a 240-GHz FMCW Radar
    System," in IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1719-1730, June 2018.
    [6] L. Wang, Y. Xiong, B. Zhang, S. Hu, and T. Lim, "Millimeter-Wave Frequency Doubler
    With Transistor Grounded-Shielding Structure in 0.13-μm SiGe BiCMOS Technology,"
    in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1304-1310,
    May 2011.
    [7] B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, "W-Band Amplifiers With 6-dB
    Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS," in IEEE
    Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 692-701, March
    2012.
    [8] J. Oh, J. Jang, C. Kim, and S. Hong, "A W-Band High-Efficiency CMOS Differential
    Current-Reused Frequency Doubler," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 5, pp. 307-309, May 2015.
    [9] J. Chen and H. Wang, "A High Gain, High Power K-Band Frequency Doubler in 0.18
    μmCMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 9,
    pp. 522-524, Sept. 2010.
    [10] Steve C. Cripps, "RF Power Amplifiers for Wireless Communications,"2nd Edition 2006.
    [11] 王淳,"以 40-nm CMOS 製程實現操作於 100-GHz 之功率放大器設計," 碩士論文 國立中央大學,July. 2017.
    [12] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz Wideband Receiver Front-End
    in 0.18-μmCMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60,
    no. 11, pp. 3502-3512, Nov. 2012.
    [13] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE
    above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554–564, Mar.
    2010.
    [14] Stephen A. Maas,“Nonlinear Microwave and RF Circuits,”2nd Edition. Artech House, pp.
    477-496, 2003.
    [15] Sarkas et al., “Silicon-Based radar and imaging sensors operating above 120 GHz,” 19th
    International Conference on Microwaves, Radar & Wireless Communications, Warsaw,
    2012, pp. 91-96.
    [16] P. Tsai, Y. Lin, J. Kuo, Z. Tsai, and H. Wang, "Broadband Balanced Frequency Doublers
    With Fundamental Rejection Enhancement Using a Novel Compensated Marchand
    Balun," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp.
    1913-1923, May 2013.
    [17] M. Uzunkol and G. Rebeiz, "A Low-Loss 50–70 GHz SPDT Switch in 90 nm CMOS,"
    in IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2003-2007, Oct. 2010.
    [18] 林憲佳,"應用於感測器與太赫茲通訊之互補式金氧 半高頻電路設計," 碩士論文國立中央大學,Oct. 2017.
    [19] B.Razavi, “RF microelectronics”,2nd edition, Prentice - Hall, 2011
    [20] D. M. Pozar, “Microwave Engineering”, 4th edition, John Wiley and Sons Inc, 2012.
    [21] Stephen Brown, Zvonko Vranesic, Fundamentals of digital logic with verilog design, 2nd
    ed. New Delhi: India, 2012.
    [22] Y. Ye, B. Yu, and Q. J. Gu, “A 165-GHz transmitter with 10.6% peak DC-toRF efficiency
    and 0.68-pj/b energy efficiency in 65-nm bulk cmos,” IEEE Trans. Microw. Theory Techn.,
    vol. 64, no. 12, pp. 4573–4584, Dec. 2016.
    [23] J. Kim, S. Kim, K. Song, and J. Rieh, "A 300-GHz SPST Switch With a New Coupled
    Line Topology in 65-nm CMOS Technology," in IEEE Transactions on Terahertz Science
    and Technology, vol. 9, no. 2, pp. 215-218, March 2019.
    [24] M. Uzunkol and G. M. Rebeiz, “140–220 GHz SPST and SPDT switches in 45 nm CMOS
    SOI,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 412–414, Aug. 2012.
    [25] J. Park et al., “A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip
    communication,” in Proc. IEEE Symp. VLSI Circuits, June 2012, pp. 48–49.
    [26] Z. Wang, P. Chiang, P. Nazari, C. Wang, Z. Chen, and P. Heydari, "A CMOS 210-GHz
    Fundamental Transceiver With OOK Modulation," in IEEE Journal of Solid-State Circuits,
    vol. 49, no. 3, pp. 564-580, March 2014.
    [27] S. Moghadami, F. Hajilou, P. Agrawal, and S. Ardalan, "A 210 GHz Fully-Integrated OOK
    Transceiver for Short-Range Wireless Chip-to-Chip Communication in 40 nm CMOS
    Technology," in IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp.
    737-741, Sept. 2015.
    [28] S. Kang, S. V. Thyagarajan and A. M. Niknejad, "A 240 GHz Fully Integrated Wideband
    QPSK Transmitter in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no.
    10, pp. 2256-2267, Oct. 2015.
    [29] N. Sarmah et al., “A fully integrated 240-GHz direct-conversion quadrature transmitter
    and receiver chipset in SiGe technology,” IEEE Trans. Microw. Theory Tech., vol. 64, no.
    2, pp. 562-574, Feb. 2016 .

    QR CODE
    :::