跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳淑媛
Shu-Yuan Wu
論文名稱: 軟土隧道襯砌應力與地盤變位之數值分析
指導教授: 李崇正
Chung-Jung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 142
中文關鍵詞: 隧道盾尾間隙閉合FLAC襯砌地盤變位
外文關鍵詞: Tunnel, Closure of Tail Voids, FLAC
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究利用有限差分程式FLAC 3.30版,以初始應力平衡之後,立即挖除土壤元素並於隧道底部放入模擬襯砌之樑元素的方式模擬盾尾間隙閉合,探討軟土隧道開挖後,隧道周圍應力傳遞、隧道周圍土壓力分布情形、地表變位、隧道周圍土層垂直與水平變位和襯砌應力等問題,此模擬方式之優點有三,除了可直接獲得盾尾間隙閉合引致之土壤漏失量對襯砌應力的影響,以及襯砌與周圍土層的互制關係、土層自然調節變形後應力重新分佈之變化和土層是否拱化等因素外,尚可直接得到盾尾間隙閉合後之地盤變位。另外本研究尚討論以數值程式模擬離心隧道模型試驗之結果。
    潛盾隧道施工引致之盾尾間隙量會使土層產生變形,導致隧道襯砌彎矩及隧道周圍土壓力劇烈變化。當盾尾間隙量持續增加,使土壓力分布不均勻,將造成隧道襯砌彎矩大量增加。此外,依據未襯砌離心隧道模型發展出來之數值程式,應用於模擬單隧道離心模型分析,試驗與數值模擬結果均顯示隧道深徑比愈大,超載係數也會增大,但最大地表沈陷量會減小。上述研究成果可供爾後於考慮盾尾間隙閉合量之襯砌設計及隧道鄰近建物保護範圍參考。



    A finite difference program—FLAC, Version3.3 is used to perform the numerical analysis in the paper. A numerical procedure is used to simulate the effects on the liner for the different amount of the tail void closure. First of all, setting gravity on the domain initializes the in-situ stress and then removing the soil element from the domain simulates the excavation process of the tunnel. At the same time, a series of beam element to form a liner seats directly on the bottom of the tunnel. Finally, the distribution of the earth pressure, the forces in the liner, the settlement trough, vertical and horizontal displacements within the domain are calculated. In addition, the numerical simulations of centrifuge model tests are also simulated.
    The tail voids due to shield tunneling resulted in soil bodies to deform, and the earth pressure around the tunnel would change its distribution and its value sharply, so that caused the change of bending moments in the tunnel liner. The larger the tail voids, the more non-uniform distribution of earth pressure and the larger bending moments in the tunnel liner were induced. Besides, the overload factor increases with C/D, however, the maximum surface settlement decreases with that. The results can provide the appropriate reference materials design of the liner and the protection of countermeasure structures and foundations adjacent to the tunnel.

    中文摘要I 英文摘要 II 目 錄IV 圖 目 錄VII 表 目 錄XII 第一章 緒論1 1-1研究動機與目的1 1-2研究方法2 1-3論文內容2 第二章 文獻回顧3 2-1軟土隧道地盤變位相關研究3 2-1-1土壤漏失量3 2-1-2地表沉陷分布形態4 2-1-3地下土層之沈陷分布形態9 2-2數值方法評估潛盾施工引致地盤變位11 2-2-1以虛擬支撐力模擬隧道開挖11 2-2-2模擬盾尾間隙閉合情形14 2-3隧道襯砌分析方法16 2-3-1不計環與環間彎矩分配之分析法16 2-3-2考慮接縫效果與環間彎矩分配之分析法20 2-4 FLAC理論架構21 2-4-1 FLAC程式基本理論架構21 2-4-2 FLAC程式的運算程序24 2-4-3 隧道分析流程25 第三章 數值分析模式42 3-1分析模式之架構42 3-1-1模擬未襯砌離心隧道模型42 3-1-2模擬潛盾隧道施工造成之土壤漏失42 3-2分析採用之元素43 3-3數值分析採用參數說明44 3-3-1離心模型試驗之土壤性質45 3-3-2台北盆地土壤之不排水剪力強度45 3-3-3環片襯砌之彈性模數45 3-3-4襯砌厚度46 3-4模擬未襯砌軟土通隧離心模型試驗46 3-4-1分析範圍與邊界條件46 3-4-2初始應力47 3-4-3支撐壓力之模擬47 3-5模擬潛盾施工土壤漏失模式47 3-5-1分析範圍及邊界條件47 3-5-2初始應力48 3-5-3環片襯砌模擬48 3-5-4土壤漏失量之模擬48 3-6使用參數整理49 第四章 數值模式結果與討論59 4-1盾尾間隙閉合後隧道周圍土壓力分布59 4-1-1隧道周圍徑向土壓力分布情形59 4-1-2隧道周圍切向土壓力分布情形61 4-2盾尾間隙閉合後襯砌應力之分布62 4-2-1盾尾間隙閉合後襯砌上彎矩之分布62 4-2-2盾尾間隙閉合後襯砌上軸力之分布64 4-2-3盾尾間隙閉合後襯砌上剪力之分布64 4-3盾尾間隙閉合後地盤變位分布型態64 4-3-1地表沈陷槽分布曲線64 4-3-2隧道頂拱變形與最大地表沈陷65 4-3-3地下土層沈陷分布型態66 4-3-4土層水平變位66 4-4模擬潛盾施工土壤漏失模式之參數分析67 4-4-1土壤初始彈性模數Ei與不排水剪力強度Su之影響67 4-4-2土壤過壓密比OCR之影響68 4-4-3襯砌勁度折減因子λ之影響71 4-4-4界面元素彈簧勁度之影響71 4-5與離心模型試驗及彈性環襯砌設計法比較72 4-5-1與離心模型試驗比較72 4-5-2與彈性環襯砌設計法比較73 4-6模擬未襯砌軟土隧道離心模型試驗之結果73 4-6-1臨界超載係數73 4-6-2隧道變形與最大地表沈陷74 4-6-3數值與實驗模型比較76 第五章 結論與建議137 5-1結論137 5-2建議138 參考文獻140

    王建智,「隧道環片襯砌分析方法之探討」,地工技術雜誌,第60期,第57-64頁(1997)。
    王獻增,「台北盆地黏性土壤不排水剪力強度之研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
    王繼勝、林軒、楊國榮,「潛盾工法與地表沈陷」,地工技術雜誌,第23期,第72-83頁(1986)。
    朱旭、楊慕泉、段紹緯,「潛盾施工管理」,第七屆大地工程學術研究討論會論文集,金山,第1033-1040頁(1997)。
    林子平,「以虛擬支撐力模擬隧道開挖及支撐施工時機」,第七屆大地工程學術研究討論會論文集,金山,第1195-1202頁(1997)。
    邱垂崇,「潛盾隧道環片應力分析之研究」,碩士論文,國立台灣大學土木工程學研究所,台北(1995)。
    邱顯堯,「並行雙隧道變形之互制行為」,碩士論文,國立中央大學土木工程研究所,中壢(1997)。
    孫麟、黃鋼、陳耀維、黃瑞德,「盾構隧道襯砌接頭交錯佈置時的研討」,結構工程,第五卷,第四期,第81-88頁(1990)。
    張吉佐、潘台生,「台北盆地土層隧道工程之設計與施工」,現代營建,第159期,第29-34頁(1993)。
    張亞輝,「潛盾隧道之結構分析」,結構工程,第五卷,第二期,第61-67頁(1990)。
    彭德俊,「黏土層中併行潛盾隧道互制現象之有限元素分析」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
    彭嚴儒,「延遲支撐對隧道變形行為之影響」,碩士論文,國立台灣工業技術學院營建工程技術學系,台北(1992)。
    黃鎮臺,「臺北市地層大地工程性質分區研究」,地工技術雜誌,第20期,第71-77頁(1987)。
    鄭建志,「軟地通隧引致地盤沈陷之有限元素分析」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
    蕭文達,「台北沉泥質黏土強度特性研究」,碩士論文,國立台灣工業技術學院營建工程技術學系,台北(1997)。
    賴慶和、廖學良、余明山、鍾毓東,「平行雙潛盾隧道沈陷特性之研究」,第五屆大地工程學術研究討論會論文集,龍門,第655-662頁(1993)。
    鄺寶山、王文禮,「FLAC程式於隧道工程之實例分析」,地工技術雜誌,第41期,第50-61頁(1993)。
    寶勇華,「軟弱岩石隧道數值分析模式研究」,碩士論文,國立台灣大學土木工程學研究所,台北(1996)。
    Atkinson, J.H., and Potts, D.M., “Subsidence Above Shallow Tunnels in Soft Ground, ” ASCE, J. Geotechnical Engineering, Vol. 103, No.GT4, pp. 307-325 (1977).
    Bernat, S., and Cambou, B., “Soil-Structure Interaction in Shield Tunnelling in Soft Soil, ”computers and Geotechnics, Vol. 22, No.3/4, pp.221-242 (1998).
    Bernat, S., Cambou, B., and Dubois, P., “Assessing a Soft Soil Tunnelling Numerical Model Using Field Data, ”Geotechnique, Vol. 49, No.4, pp. 427-452 (1999).
    Clough, G.W., and Schmidt, B., “Design and Performance of Excavation and Tunnels in Soft Clay, ”in Soft Clay Engineering, edited by E.W. Brand and R.P. Brenner, pp. 600-634 (1981).
    Cording, E.J., and Hansmire, W.H., “Displacement Around Soft Ground Tunnels, ”Proc. 6th Panamerican Conf. On Soil Mech. And Found. Eng., Buenon Aires, pp. 571-633 (1975).
    Duddeck, H., “Analysis of Linings for Shield Driven Tunnels, ”Tunnelling in Soft and Water-Bearing Grounds, A.A. Balkema, pp.235-241(1985).
    Duddeck, H., and Erdmann, J., “Structural Design Models for Tunnels, ”Tunnel’ 82, Proc. 3. Int. Symp. Institution of Mining and Metallurgy, pp. 83-91(1982).
    Duncan, J.M., Byune, P., Wong, K.S., and Mabry, P., “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stresses and Movements in Soil Masses, ”Report No. UCB/GT/80-01, College of Engineering Office of Research Services, University of California, Berkeley.
    Einstein, H.H., and Schwartz, C.W., “Simplified Analysis for Tunnel Supports, ”Journal of the Geotechnical Engineering Division, ASCE, pp. 499-518(1979).
    Fang, Y.S., Lin, G.J., and Su, C.S., “An Estimation of Ground Settlement Due to Shield Tunnelling by the Peck-Fujita Method, ”Can. Geotech. J., Vol. 31 pp. 431-443 (1994).
    FLAC User’s Manual, Version3.3, ITASCA Consulting Group, Inc., U.S.A.(1995).
    Hansmire, W.H., and Cording, E.J., “Soil Tunnel Test Section Case History Summary, ”ASCE, J. Geotechnical Engineering, Vol. 111, No.11, pp. 1301-1320 (1985).
    Hansmire, W.H., and Cording, E.J., discussion of “Subsidence over Soft Ground Tunnel, ”by Roger A. Butler and Delon Hampton, ASCE, J. Geotechnical Engineering Division, Vol. 102, No.GT3, pp. 259-261 (1976).
    Lee, C.J., Wu, B.R., and Chiou, S.Y., “Soil Movements Around a Tunnel in Soft Soils, ”Proc. Natle. Sci Counc. ROC(A), Vol. 23, No. 2, pp. 235-247(1999).
    Mair, R.J., Taylor, R.N., and Bracegirdie, A., “Subsurface Settlement Profiles Above Tunnels in Clays, ”Geotechnique 43, No. 2, pp. 315-320(1993).
    Mayne, P.W., and Kulhawy, F.H., “Ko — OCR Relationships in Soil, ” ASCE, Journal of the Geotechnical Engineering Division, Vol. 108, No. GT6, pp. 851-872(1982).
    Muir Wood, A.M., “The Circular Tunnel in Elastic Ground, ”Geotechnique, Vol. 25, No. 1, pp.115-127(1975).
    Peck, R.B., “Deep Excavation and Tunnelling in Soft Ground, ”State of Art, Proc. 7th Int. Conf. On Soil Mech. Found. Eng., State of Art Volume, pp. 225-290 (1969).
    Wang, J.J., and Chang, C.T., “Numerical Method in Analysis of Stacked Tunnels, ”Proceedings of the International Congress Towards New Worlds in Tunnelling, Acapulco, Vol. 1, pp. 197-202(1992).
    Wroth, C.P., Randolph, M.F., Houlsby, G.T., and Fahey, M., “A Review of the Engineering Properties of Soils with Particular Reference to the Shear Modulus, ”CUED/D-SOILS TR 75, University of Cambridge(1979).

    QR CODE
    :::