| 研究生: |
蔡宗益 Tsung-Yi Tsai |
|---|---|
| 論文名稱: |
大範圍無線感測網路下分散式資料壓縮收集演算法 Distributed Compressive Data Aggregation in Large-Scale Wireless Sensor Networks |
| 指導教授: |
孫敏德
Ming-Te Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 資料收集 、無線感測網路 |
| 外文關鍵詞: | Compressive Data Aggregation, Wireless Sensor Networks |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近幾年,壓縮式取樣技術(compressive sampling theory)正被廣泛地使用在
無線感測網路的資料收集應用上。藉由結合壓縮式取樣技術和路由路徑(routing
path),有些研究提供了集中式的演算法來最小化整體網路的資料傳輸。然而這些
演算法通常需要完整的網路拓樸資訊和複雜的運算來取得最佳解。因此,當網路
的拓樸變動時,這些集中式演算法往往需要耗費許多的傳輸來重建整個路由路
徑。在這篇論文,我們提出了第一個分散式演算法來解決這個問題。我們首先介
紹兩個分散式路由路徑建構演算法來算建立路由路徑。接著,我們發表一個最小
化區域資料傳輸演算法來減少整體網路的資料傳輸量。模擬結果顯示出我們的演
算法所耗費的建置成本遠低於集中式演算法。
As compressive sampling theory has been extensively used for data aggregation
in wireless sensor network, some researches provide a centralize protocol that can
minimize the data traffic in the network through the combination of routing and
compressive sampling. However, these protocols require the entire network topology
information to compute the optimal solution. As a result, when the network
environment is not stable, these protocols incur too much overhead. In this thesis, we
investigate the decentralized scheme that can efficiently construct the routing path for
compressive data aggregation. We first propose two distributed algorithms, namely
MRT and MAT, to construct the routing path for compressive data aggregation. After
works, an adjustment algorithm is proposed to locally redirect the data flow and
further minimize the data traffic. The simulation results indicated that the construction
overhead of our approaches is much lower than the centralize protocol.
[1] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. ”An
analysis of a large scale habitat monitoring application,” In Proc. of ACM
SenSys, 2004.
[2] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, D.
Estrin, ”A wireless sensor network for structural monitoring,” In Proc. of ACM
SenSys, 2004.
[3] C. W. Chen and Y. Wang. ”Chain-type wireless sensor network for monitoring
long range infrastructures: architecture and protocols,” International Journal
on Distributed Sensor Networks, 4(4), Oct. 2008.
[4] D. Donoho, ”Compressed sensing,” IEEE Trans. Inform. Theory,
52(4):1289V1306, Apr. 2006.
[5] R. Baraniuk, ”Compressive sensing,” IEEE Signal Processing Magazine,
24(4):118V121, Jul. 2007.
[6] E. Cand‘ es and M. Wakin, ”An Introduction to Compressive Sampling,” IEEE
Signal Processing Mag., vol. 25, no. 3, 2008.
[7] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, ”Compressed Sensing for
Networked Data,” IEEE Signal Processing Mag., vol. 25, no. 3, 2008
[8] N. Ahmed , T. Natarajan and K. R. Rao ”Discrete cosine transform”, IEEE
Trans. Computer, vol. 23, pp.90 1974
[9] L. Xiang, J. Luo, and A. Vasilakos, ”Compressed data aggregation for energy
efficient wireless sensor networks,” Proc. of the 8th IEEE SECON, 2011.
[10] S. Mehrjoo, J. Shanbehzadeh, AND M. M. Pedram, ”A Novel Intelligent
Energy-Efficient Delay-Aware Routing in WSN, based on Compressive Sens-
ing,” 5th International Symposium on Telecommunications, 2010.
[11] F. Reichenbach, M. Handy, and D. Timmermann, ”Monitoring the ocean envi-
ronment with large-area wireless sensor networks,” 8th EUROMICRO Confer-
ence on Digital System Design, 2005.
[12] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, ”Compressive wireless sensing,”
in Proceedings of the 5th international conference on Information processing in
sensor networks. ACM, 2006, pp. 134-14
[13] C. Luo, F. Wu, J. Sun, and C.-W. Chen, ”Compressive Data Gathering for
Large-Scale Wireless Sensor Networks,” in Proc. of the 15th ACM MobiCom,
2009.
[14] Z. Charbiwala, S. Chakraborty, S. Zahedi, Y. Kim, M. Srivastava, T. He, and C.
Bisdikian, ”Compressive Oversampling for Robust Data Transmission in Sensor
Networks,” in Proc. of the 29th IEEE INFOCOM, 2010.
[15] J. Wang, S. Tang, B. Yin, AND X.-Y. Li, ”Data Gathering in Wireless Sensor
Networks Through Intelligent Compressive Sensing”, in Proc. of the 31th IEEE
INFOCOM, 2012.
[16] J. Luo, L. Xiang, AND C. Rosenberg, ”Does Compressed Sensing Improve the
Throughput of Wireless Sensor Networks?,” Proc. of the IEEE ICC, 2010.
[17] B. Zhang, X. Cheng, N. Zhang, Y. Cui, Y. Li, and Q. Liang, ”Sparse target
counting and localization in sensor networks based on compressive sensing,” in
IEEE INFOCOM, 2011.
[18] J. Meng, H. Li, and Z. Han, ”Sparse event detection in wireless sensor networks
using compressive sensing,” in the 43rd Annual Conference on Information Sci-
ences and Systems (CISS), 2009.
[19] H. Zheng, S. Xiao, X. Wang ,” Sequential Compressive Target Detection in
Wireless Sensor Networks,” in Proc. of the IEEE ICC, 2011.
[20] M. Lin, C. Luo, F. Liu, and F. Wu, ”Compressive data persistence in large-scale
wireless sensor networks,” in IEEE GLOBECOM, 2010.
[21] A. Talari and N. Rahnavard , ”CStorage: Distributed Data Storage in Wire-
less Sensor Networks Employing Compressive Sensing,” in IEEE GLOBECOM,
2011.
[22] E. Cand‘ es and T. Tao, Decoding by linear programming, IEEE Trans. on
Information Theory, vol. 51, no. 12, pp. 4203V4215, 2005
[23] Y. Wang, J. Gao, and J. S. B. Mitchell, Boundary recognition in sensor net-
works by topological methods, in MobiCom 06: Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, 2006.
[24] A. Qayyum, L. Viennot and A. Laouiti, Multipoint Relaying for Flooding
Broadcast Message in Mobile Wireless Networks, Proc. 35th Ann. Hawaii Int”l
Conf. System Sciences (HICSS), vol. 9, p. 298, Jan. 2002.
[25] X. Zhu, R. Sarkar, and J. Gao, ”Shape Segmentation and Applications in Sensor
Networks,” Proc. IEEE INFOCOM, pp. 1838-1846, May 2007.