跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡宗益
Tsung-Yi Tsai
論文名稱: 大範圍無線感測網路下分散式資料壓縮收集演算法
Distributed Compressive Data Aggregation in Large-Scale Wireless Sensor Networks
指導教授: 孫敏德
Ming-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 38
中文關鍵詞: 資料收集無線感測網路
外文關鍵詞: Compressive Data Aggregation, Wireless Sensor Networks
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近幾年,壓縮式取樣技術(compressive sampling theory)正被廣泛地使用在
    無線感測網路的資料收集應用上。藉由結合壓縮式取樣技術和路由路徑(routing
    path),有些研究提供了集中式的演算法來最小化整體網路的資料傳輸。然而這些
    演算法通常需要完整的網路拓樸資訊和複雜的運算來取得最佳解。因此,當網路
    的拓樸變動時,這些集中式演算法往往需要耗費許多的傳輸來重建整個路由路
    徑。在這篇論文,我們提出了第一個分散式演算法來解決這個問題。我們首先介
    紹兩個分散式路由路徑建構演算法來算建立路由路徑。接著,我們發表一個最小
    化區域資料傳輸演算法來減少整體網路的資料傳輸量。模擬結果顯示出我們的演
    算法所耗費的建置成本遠低於集中式演算法。


    As compressive sampling theory has been extensively used for data aggregation
    in wireless sensor network, some researches provide a centralize protocol that can
    minimize the data traffic in the network through the combination of routing and
    compressive sampling. However, these protocols require the entire network topology
    information to compute the optimal solution. As a result, when the network
    environment is not stable, these protocols incur too much overhead. In this thesis, we
    investigate the decentralized scheme that can efficiently construct the routing path for
    compressive data aggregation. We first propose two distributed algorithms, namely
    MRT and MAT, to construct the routing path for compressive data aggregation. After
    works, an adjustment algorithm is proposed to locally redirect the data flow and
    further minimize the data traffic. The simulation results indicated that the construction
    overhead of our approaches is much lower than the centralize protocol.

    1 Introduction 1 2 Literature Review 3 2.1 CS Technique Improvement: . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 CS-based Aggregation Path Optimization: . . . . . . . . . . . . . . . 4 2.3 CS Application in WSNs: . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Preliminary 5 3.1 Compressive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Hybrid Compressive Data Gathering . . . . . . . . . . . . . . . . . . 6 3.3 Medial Axis of WSNs . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Main Idea 10 4.1 Minimum Relay Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Medial Axis based Compressive Data Aggregation Tree . . . . . . . 13 4.3 Local Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Performance Analysis 16 5.1 Global Data Traffic Comparison . . . . . . . . . . . . . . . . . . . . 18 5.2 Overhead Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Efficiency of Different Network Density . . . . . . . . . . . . . . . . 20 5.4 Efficiency of Different Compression Factor M . . . . . . . . . . . . . 23 6 Conclusion and Future Work 26 7 Reference 27

    [1] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. ”An
    analysis of a large scale habitat monitoring application,” In Proc. of ACM
    SenSys, 2004.
    [2] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, D.
    Estrin, ”A wireless sensor network for structural monitoring,” In Proc. of ACM
    SenSys, 2004.
    [3] C. W. Chen and Y. Wang. ”Chain-type wireless sensor network for monitoring
    long range infrastructures: architecture and protocols,” International Journal
    on Distributed Sensor Networks, 4(4), Oct. 2008.
    [4] D. Donoho, ”Compressed sensing,” IEEE Trans. Inform. Theory,
    52(4):1289V1306, Apr. 2006.
    [5] R. Baraniuk, ”Compressive sensing,” IEEE Signal Processing Magazine,
    24(4):118V121, Jul. 2007.
    [6] E. Cand‘ es and M. Wakin, ”An Introduction to Compressive Sampling,” IEEE
    Signal Processing Mag., vol. 25, no. 3, 2008.
    [7] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, ”Compressed Sensing for
    Networked Data,” IEEE Signal Processing Mag., vol. 25, no. 3, 2008
    [8] N. Ahmed , T. Natarajan and K. R. Rao ”Discrete cosine transform”, IEEE
    Trans. Computer, vol. 23, pp.90 1974
    [9] L. Xiang, J. Luo, and A. Vasilakos, ”Compressed data aggregation for energy
    efficient wireless sensor networks,” Proc. of the 8th IEEE SECON, 2011.
    [10] S. Mehrjoo, J. Shanbehzadeh, AND M. M. Pedram, ”A Novel Intelligent
    Energy-Efficient Delay-Aware Routing in WSN, based on Compressive Sens-
    ing,” 5th International Symposium on Telecommunications, 2010.
    [11] F. Reichenbach, M. Handy, and D. Timmermann, ”Monitoring the ocean envi-
    ronment with large-area wireless sensor networks,” 8th EUROMICRO Confer-
    ence on Digital System Design, 2005.
    [12] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, ”Compressive wireless sensing,”
    in Proceedings of the 5th international conference on Information processing in
    sensor networks. ACM, 2006, pp. 134-14
    [13] C. Luo, F. Wu, J. Sun, and C.-W. Chen, ”Compressive Data Gathering for
    Large-Scale Wireless Sensor Networks,” in Proc. of the 15th ACM MobiCom,
    2009.
    [14] Z. Charbiwala, S. Chakraborty, S. Zahedi, Y. Kim, M. Srivastava, T. He, and C.
    Bisdikian, ”Compressive Oversampling for Robust Data Transmission in Sensor
    Networks,” in Proc. of the 29th IEEE INFOCOM, 2010.
    [15] J. Wang, S. Tang, B. Yin, AND X.-Y. Li, ”Data Gathering in Wireless Sensor
    Networks Through Intelligent Compressive Sensing”, in Proc. of the 31th IEEE
    INFOCOM, 2012.
    [16] J. Luo, L. Xiang, AND C. Rosenberg, ”Does Compressed Sensing Improve the
    Throughput of Wireless Sensor Networks?,” Proc. of the IEEE ICC, 2010.
    [17] B. Zhang, X. Cheng, N. Zhang, Y. Cui, Y. Li, and Q. Liang, ”Sparse target
    counting and localization in sensor networks based on compressive sensing,” in
    IEEE INFOCOM, 2011.
    [18] J. Meng, H. Li, and Z. Han, ”Sparse event detection in wireless sensor networks
    using compressive sensing,” in the 43rd Annual Conference on Information Sci-
    ences and Systems (CISS), 2009.
    [19] H. Zheng, S. Xiao, X. Wang ,” Sequential Compressive Target Detection in
    Wireless Sensor Networks,” in Proc. of the IEEE ICC, 2011.
    [20] M. Lin, C. Luo, F. Liu, and F. Wu, ”Compressive data persistence in large-scale
    wireless sensor networks,” in IEEE GLOBECOM, 2010.
    [21] A. Talari and N. Rahnavard , ”CStorage: Distributed Data Storage in Wire-
    less Sensor Networks Employing Compressive Sensing,” in IEEE GLOBECOM,
    2011.
    [22] E. Cand‘ es and T. Tao, Decoding by linear programming, IEEE Trans. on
    Information Theory, vol. 51, no. 12, pp. 4203V4215, 2005
    [23] Y. Wang, J. Gao, and J. S. B. Mitchell, Boundary recognition in sensor net-
    works by topological methods, in MobiCom 06: Proceedings of the ACM/IEEE
    International Conference on Mobile Computing and Networking, 2006.
    [24] A. Qayyum, L. Viennot and A. Laouiti, Multipoint Relaying for Flooding
    Broadcast Message in Mobile Wireless Networks, Proc. 35th Ann. Hawaii Int”l
    Conf. System Sciences (HICSS), vol. 9, p. 298, Jan. 2002.
    [25] X. Zhu, R. Sarkar, and J. Gao, ”Shape Segmentation and Applications in Sensor
    Networks,” Proc. IEEE INFOCOM, pp. 1838-1846, May 2007.

    QR CODE
    :::