| 研究生: |
林澤青 Tse-ching Lin |
|---|---|
| 論文名稱: |
應用於IEEE 802.11n/b/g 2.4GHz無線基地台之平面式偶極陣列天線研製 Study of Planar Dipole Antenna Array for IEEE 802.11 n/b/g 2.4GHz Access Point |
| 指導教授: |
陳念偉
Nan-Wei Chen 許晉瑋 Jin-Wei Shi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系在職專班 Executive Master of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 天線 、陣列式 、2.4GHz 、802.11n |
| 外文關鍵詞: | antenna array, 2.4GHz, access point |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中研製二款應用於IEEE 802.11n/b/g 2.4GHz 多重輸入與輸出(multi-input multi-output)無線通訊系統之偶極陣列天線(dipole array antenna),天線設計上採一維陣列的架構以及延伸接地面設計,增加天線指向性及偶極天線間之隔離度(isolation) ,並減少多路徑(multi-Path)效應,以提昇該類通訊系統之覆蓋率(indoor coverage)與吞吐量(throughput)。
天線結構採偶極天線為天線元件(element),饋入方式為共同饋入(corporate feed),饋點連接的部分,使用1.32mm線寬的同軸纜線(coaxial cable)及I-PEX接頭,天線間利用50Ω微帶線相連接。天線特性分析使用CST Microwave Studio軟體,模擬結果經由實作量測驗證。模擬與實測結果發現天線特性除保有原偶極天線輻射特性之外,天線增益與指向性也達到一定程度的提昇,最後在實際室內場地802.11n的覆蓋率以及吞吐量的測試上優於傳統單偶極天線。
The design and analysis of dipole arrays for IEEE 802.11n/b/g 2.4GHz multi-input multi-output (MIMO) wireless access points are presented. The one-dimensional array configuration and the extended ground plane are exploited for antenna directivity enhancement. Also, the isolation between elements is improved and the impact of the multi-path effect on system performance is reduced. With the proposed antenna, the indoor coverage and throughput of the MIMO access point are reasonably improved.
The antenna structure consists of a 50Ω microstrip-line feed and two dipole antennas as array elements. The microstrip-line feed is connected to the corporate feed through the 1.32mm coaxial cable with I-PEX connectors. The proposed antenna arrays are characterized with the commercial full-wave electromagnetic solver, CST Microwave Studio. The antenna design is verified through the measurement results. The simulation and measurement results show that the proposed antenna features similar radiation patterns of the traditional half-wavelength dipole. However, the antenna gain and directivity are reasonably increased, which leads to better indoor coverage and throughput associated with the MIMO access point.
[1]KAI CHANG “RF and Microwave Wireless System” , John Wiley & Sons, Inc. New York, USA
[2]E.A. Wolff and R. Kaul, Microwave Engineering and Systems Applications, John Wiley & Sons, New York, 1998.
[3]K. Chang, Microwave Solid-State Circuit and Applications, John Wiley & Sons, New York, 1994.
[4]H. A. Wheeler, “Transmission-Line Properties of Parallel Strips Separated by a Dielectric Sheet,”IEEE Trans. Microwave Theory Tech.,Vol. MTT-13, pp. 172-185, 1965.
[5]H. E. Brenner, “Numerical Solution of TEM-Line Problems Involving Inhomogeneous Media,”IEEE Trans. Microwave Theory Tech.,Vol. MTT-15, pp. 485-487, 1967.
[6]H. E. Stinehelfer, “An Accurate Calculation of Uniform Microstrip Transmission-Lines,”IEEE Trans. Electron Devices, Vol. ED-15, pp. 501-506, 1968.
[7]E. Yamashita and R. Mittra, “Variational Method for the Analysis of Microstrip Lines,”IEEE Trans. Microwave Theory Tech., Vol. MTT-16, pp. 529-535, 1968.
[8]B. Bhat and S. K. Koul, “Unified Approach to Solve a Class of Strip and Microstrip-Line Transmission-Lines,”IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 679-686, 1982.
[9]R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, New York, 1st ed. 1966, 2nd ed. 1992.
[10]J. A. Navarro and K. Chang, Integrated Active Antennas and Spatial Power Combining, John Wiley & Sons, New York, 1996.
[11]M. Skolnik, Ed., Radar Handbook, 2nd ed., McGraw-Hill, new York, 1990, Ch. 7.