| 研究生: |
蘇莉真 Li-Chen Su |
|---|---|
| 論文名稱: |
利用擴散光子對密度波量測高濃度散射介質中的葡萄糖濃度 A Measurement of Glucose Concentration in a Multiple Scattering Medium by Diffused Photon-Pair Density |
| 指導教授: |
周晟
Chien Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 非侵入式 、葡萄糖濃度 、光學量測 |
| 外文關鍵詞: | heterodyne interference, glucose concentration, noninvasive |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出的非侵入式量測高濃度散射介質中葡萄糖濃度的技術,是建立在擴散光子對密度波(diffused photon-pair density wave, DPPDW)的原理和外差干涉(heterodyne interference)的技術上。雙頻雷射所輸出的雙頻率光束為偏極化態正交且互相關聯的光子對,當光束進入高濃度散射介質後,因為遭受多重散射事件而在散射介質中形成滿足擴散方程式(diffusion equation)的擴散光子對密度波。藉由偵測外差干涉訊號,擴散光子對具有空間同調篩選(spatial coherence gating)與偏極化態篩選(polarization gating)兩個特性,因此能選出較弱散射的光子對並且等效地降低散射效應。此外,由於擴散光子對在散射介質中傳播具有共路徑(common path)與同調偵測(coherent detection)的特性,所以能提升外差干涉訊號的振幅與相位之訊雜比(signal-to-noise ratio)。
隨著散射介質中葡萄糖濃度的增加,溶液的折射率升高,溶液中的懸浮微粒和溶液的折射率不匹配(refraction index mismatch)降低,因此溶液的傳播散射係數會減小。藉由偵測外差干涉訊號的振幅和相位可有效地求得高濃度散射介質的傳播散射係數(reduced scattering coefficient)與吸收係數(absorption coefficient),進而得知溶液中葡萄糖濃度的變化。
In this study, we propose a novel noninvasive glucose detection approach based on diffused photon-pair density wave (DPPDW) and heterodyne interference technique. DPPDW is produced by correlated polarized photon-pairs (PPPs) at different temporal frequencies and a pair of parallel linear polarized states in a multiple scattering medium. Since the heterodyne signal is generated by PPPs based on spatial coherence and degree of polarization (DOP) properties simultaneously, therefore, the spatial coherence gating and the polarization gating are able to select the weak scattering PPPs out of multiple scattering photons in a multiple scattering medium. The signal to noise ratio (SNR) of amplitude and phase detection of the heterodyne signal has been improved by the features of coherent detection and common-path propagation of PPPs in a multiple scattering medium.
Adding glucose to a multiple scattering medium will raise the refraction index of the medium and will consequently decrease the reduced scattering coefficient of the medium as a whole. The reduced scattering coefficient and the absorption coefficient are calculated by measurement of DPPDW and then correlate with the change of glucose concentration.
1. K. C. Hadley, and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291-299 (2002).
2. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37, 3553-3557 (1998).
3. C. Chou, Y. C. Huang, C. M. Feng, and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356-359 (1997).
4. D. C. Klonoff, “Noninvasive blood glucose monitoring,” Diabetes Care 20, 433-437 (1997).
5. K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt. 11, 014022 (2006).
6. Y. J. Kim, and G. Yoon, “Prediction of glucose in whole blood by near-infrared spectroscopy: Influence of wavelength region, preprocessing, and hemoglobin concentration,” J. Biomed. Opt. 11, 041128 (2006).
7. A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, “Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy,” Anal. Chem. 77, 4587-4594 (2005).
8. K. Maruo, M. Tsurugi, and M. Tamura, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc. 57, 1236-1244 (2003).
9. L. A. Paunescu, A. Michalos, H. C. Jee, U. Wolf, M. Wolf, and E. Gratton, “In vitro correlation between reduced scattering coefficient and hemoglobin concentration of human blood determined by near-infrared spectroscopy,” Proc. SPIE Int. Soc. Opt. Eng. 4250, 319-326 (2001).
10. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlations between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062-2064 (1994).
11. M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267-1287 (1995).
12. D. A. Boas, M. A. Oleary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: A signal-to-noise analysis,” Appl. Opt. 36, 75-92 (1997).
13. D. G. Papaioannou, G. W. ’t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305-310 (1996).
14. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992-994 (2001).
15. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, ”Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25, 2263-2267 (2002).
16. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. SEL. TOP. Quant 9, 210-221 (2003).
17. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, Massoud Motamedi, and R. O. Esenaliev, ”Optimization of low coherence interferometry for quantitative analysis of tissue optical properties,” Proc. SPIE Int. Soc. Opt. Eng. 4624, 36-46 (2002).
18. K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, ”Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: A pilot study,” Phys. Med. Biol. 48, 1371-1390 (2003).
19. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations,” Appl. Opt. 43, 3408-3414 (2004).
20. M. A. Arnold, and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem. 77, 5429-5439 (2005).
21. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210-2215 (1989).
22. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. I.
23. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
24. M. Cope, P. van der Zee, M. Essenpreis, S. R. Arridge, and D. T. Delpy, “Data analysis methods for near infrared spectroscopy of tissues: problems in determining the relative cytochrome aa3 concentration,” Proc. SPIE Int. Soc. Opt. Eng. 1431, 251-263 (1991).
25. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
26. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Propeties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607-616 (1993).
27. J. B. Fishkin, and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127-140 (1993).
28. D. A. Boas, M. A. O’leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91 4887-4891 (1994).
29. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264-1266 (1977).
30. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several of published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54 (1995).
31. Yi-Hsin Chan, Chien Chou, Jheng-Syong Wu, Hsiu-Fong Chang, and Hon-Fai Yau, “Properties of a diffused photon-pair density wave in a multiple-scattering medium,” Appl. Opt. 44, 1416-1425, (2005).
32. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231-5243, (2000).
33. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: light emitting diode based technique,” Appl. Opt. 33, 5204-5213 (1994).
34. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501-2510 (1994).
35. M. Kohl, M. Cope, Ma. Essenpreis, and D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170-2172 (1994).
36. L. Heinemann, and G. Schmelzeisen-Redeker, “Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors,” Diabetologia 41, 848-854 (1998).
37. H. J. Vanstaveren, C. J. M. Moes, J. Vanmarle, S. A. Prahl, and M. J. C. Vangemert, “Light-Scattering in Intralipid-10-Percent in the Wavelength Range of 400-1100 Nm,” Appl. Opt. 30, 4507-4514 (1991).
38. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510 (1992).
39. S. Jacques, “Optical properties of "IntralipidTM", an aqueous suspension of lipid droplets,” http://omlc.ogi.edu/spectra/intralipid/
40. S. Prahl, “Optical absorption of methylene blue,” http://omlc.ogi.edu/spectra/mb/
41. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F .M. Demul, J. Greve, and M.H. Koelink, “Reduced Light-Scattering Properties for Mixtures of Spherical-Particles - A Simple Approximation Derived from Mie Calculations,” Appl. Opt. 31, 1370-1376 (1992).
42. L. Heinemann, U. Kramer, et al., “Noninvasive Glucose Measurement by Monitoring of Scattering Coefficient During Oral Glucose Tolerance Tests,” Diabetes Technology & Therapeutics 2, 211-220 (2000).
43. B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: Models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
44. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11, 040501 (2006).
45. B. Choi, L. Tsu, E. Chen, T. S. Ishak, S. M. Iskandar, S. Chess, and J. S. Nelson, “Determination of chemical agent optical clearing potential using in vitro human skin,” Lasers Surg. Med. 36, 72-75 (2005).
46. A. T. Yeh, and J. Hirshburg, “Molecular interactions of exogenous chemical agents with collagen - implications for tissue optical clearing,” J. Biomed. Opt. 11, 014003 (2006).
47. O. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133-141 (1999).
48. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982-1989 (1998).
49. K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt. 11, 014022 (2006).
50. K. Yamakoshi, and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11, 054028 (2006).
51. R. Liu, W. L. Chen, X. Y. Gu, R. K. K. Wang, and K. X. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys. 38, 2675-2681 (2005).
52. W. Nahm, and H. Gehring, “Noninvasive In-Vivo Measurement of Blood Spectrum by Time-Resolved Near-Infrared Spectroscopy,” Sensor Actuat. B-Chem. 29, 174-179 (1995).