跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卜華文
Canggih Setya Budi
論文名稱: 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
Fabrication of Silver Nanoparticle Arrays by Anodic Alumina Oxide Templates and Their Application for Surface-Enhanced Raman Scattering
指導教授: 陳一塵
I-chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 95
中文關鍵詞: 表面增強拉曼散射奈米銀粒子陽極氧化鋁
外文關鍵詞: Ag nanoparticles, AAO, SERS
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在拉曼散射光譜中的散射強度相當微弱,若待測物的濃度相當低則會使此項分析具有相當大的挑戰性,因此表面增強拉曼散射 (Surface-Enhanced Raman Scattering, SERS) 這項提升拉曼訊號的技術近年來快速的發展,而在這項技術中製備乾淨及高SERS活性基板的再現性仍存在許多限制。
    在本研究中利用模板輔助沉積奈米銀粒子陣列於矽基板上以期作為SERS之應用,利用二次陽極氧化鋁 (Anodic Alumina Oxide, AAO)模板作為蒸鍍的遮罩用以成長奈米銀粒子陣列,在製程中可藉由調整模板的孔徑大小及蒸鍍之厚度,控制奈米銀粒子陣列的尺寸、形狀及間距。
    由研究結果得知,孔徑尺寸及粒子間距之比例 (Interspacing Ratio ,γ)將影響SERS活性,似半球形之Ag NP2具有較大的γ值 (8.82)使其在SERS性質的提升大於γ值較小之Ag NP1 (4.32);而有趣的是,錐狀的奈米銀具有最高的SERS活性。
    無論是似半球型或錐狀的奈米銀粒子陣列皆可有效的提升拉曼訊號,與塊材的基板相比,在羅丹明6G (Rhodamine 6G)濃度為10-6M時可提升拉曼訊號約107倍。


    Due to the very small scattering intensity of ordinary Raman spectroscopy, the detection of analytes at very low concentration is a very challenging problem. It drives a rapid development of surface-enhanced Raman scattering (SERS) to amplify the Raman signals. However, it is still mainly limited by the reproducible preparation of clear and highly SERS-active substrate.
    In this study, we introduced template-assisted deposition method to fabricate silver nanoparticle arrays on Si wafer for SERS application. The free standing through holes anodic alumina oxide (AAO) templates were firstly prepared by two step anodization and used as masks during vapor-phase deposition. Tunable size, shape and spacing of silver nanoparticle arrays can be obtained by adjusting the pore size of templates and changing the deposited silver thickness.
    It was found that the diameter size and interspacing ratio (γ) affects their SERS activity, hemispherical-like Ag NP2 which has larger γ 8.82 performed higher enhancement properties than that of Ag NP1with γ 4.32. Interestingly, (cone-like Ag nanoparticles, Ag NC) which has sharp edge at the top showed the highest activity among others. These SERS-active substrates drastically enhanced the Raman signals of 10-6 M Rhodamine 6G up to 107 folds compared to the bulky reference.

    摘要…………………………………………………………………………………i Abstract ……………………………………………………………………ii Acknowledgement………………………………………………………………iii Contents …………………………………………………………………………iv List of Figures …………………………………………………………………vii List of Tables …………………………………………………………………x Chapter 1 Introduction …………………………………………………………1 Chapter II Literature Review………………………………………………………5 2.1 Development of SERS…………………………………………………………5 2.1.1 Conventional Raman Spectroscopy …………………………5 2.1.2 History of SERS……………………………………………9 2.1.3 Mechanism of SERS………………………………………………………11 2.1.3.1 Electromagnetic field enhancement………………………………………11 2.1.3.2 Chemical enhancement………………………………13 2.2SERS Enhancement Factor……………………………………………………15 2.3SERS-Active Substrate………………………………………………………17 2.3.1Random and non-uniform roughened substrate……………………………17 2.3.2Colloidal metal nanoparticles………………………………………………20 2.3.3Metal nanoparticles immobilized on solid substrate………21 2.3.4Highly ordered metallic nanostructure arrays on solid substrate…………23 2.3.4.1 Langmuir Blodgett technique……………………………………………23 2.3.4.2 Nanolithography and nanoimprint………………………………………24 2.3.4.3 Template methods……………………………………28 2.4Anodic Aluminum Oxide (AAO) Template…………………………30 2.4.1AAO configuration…………………………………………………………30 2.4.2Fabrication routes for AAO…………………………………………………32 2.4.3Self-organized nanoporous AAO formation…………………………………32 2.4.4AAO-assisted nanostructure fabrication……………………………………34 2.5Rhodamine 6G Dye as SERS Probe Molecule………………………………36 Chapter III Experimental Section ………………………………………………37 3.1Chemicals and Materials………………………………………………………37 3.2Preparation of SERS Substrates………………………………………………39 3.2.1Preparation of nanoporous AAO templates…………………40 3.2.2AAO template-assisted fabrication of Ag nanoparticles……………………42 3.3Material Characterization ……………………………………………………43 3.3.1Scanning Electron Microscopy ……………………………………………43 3.3.2Image J 1.45m Software ……………………………………43 3.3.3Raman Spectroscopy…………………………………………………43 3.4SERS Evaluation………………………………………………………………44 3.4.1Preparation of analytes……………………………………44 3.4.2SERS Measurement………………………………………………………44 3.4.3Calculation of SERS enhancement factor (EF) ………………45 Chapter IV Results and Discussion ……………………………………………46 4.1Preparation of AAO Templates ………………………………………46 4.1.1Aluminum electropolishing pretreatment ……………………46 4.1.2AAO templates prepared by two-step anodization …………51 4.2 Fabrication of Ag Nanoparticle Arrays by AAO template method……65 4.2.1 Silver nanoparticle arrays with different diameter-spacing ratio ………65 4.2.2 Silver nanoparticle arrays with cone-like shape……………77 4.3SERS Activity of Ag Nanoparticle Arrays …………………………………79 4.3.1Diameter-spacing ratio (γ) effect on the Raman signal enhancement………79 4.3.2SERS enhancement factor ……………………………………84 4.3.3 Nanoparticle shape effect on the Raman signal enhancement..88 Chapter V Conclusions …………………………………………………………89 References ………………………………………………………………………91

    [1] R.L. McCreery, Raman Spectroscopy for Chemical Analysis, 2000, John Wiley & Sons, New York
    [2] Smith E, Dent G, Modern Raman Spectroscopy, 2000, John Wiley & Sons, New York
    [3] M. Fleischmann, P.J. Hendra, A.J. McQuilla, Chem. Phys. Lett., 1974, 26, 163
    [4] A. Campion and P. Kambhampati, Chem. Soc. Rev., 1998, 27, 241
    [5] K.A. Bosnick, J. Jiang, L.E. Brus, J. Phys. Chem. B, 2002, 106, 8096
    [6] J. Zheng, Y. Zhou, X. Li, Y. Ji, T. Lu, R. Gu, Langmuir, 2003, 19, 632
    [7] S.E.J. Bell, N.M.S. Sirimuthu , Analyst, 2004, 129, 1032
    [8] R.L. Ferraro, Introductory Raman Spectroscopy, 1994, Academic Press U.S.A
    [9] D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem., 1977, 84, 1
    [10] M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc., 1997, 99, 5215
    [11] B. Pettinger, U. Wenning, H. Wetzel, Surface Science, 1980, 101, 409
    [12] M. Moskovits, J. Chem. Phys., 1978, 69, 4159
    [13] R.M. Hexter, M.G. Albercht, Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy, 1979, 35, 233
    [14] J.C. Rubin, J. Electroanal. Chem., 1987, 220, 339
    [15] K. Carron, K. Mullen, M. Lanuoette, H. Angersbach, Appl. Spectrosc., 1991, 45, 420
    [16] S.M. Nie, S.R. Emery, Science, 1997, 275, 1102
    [17] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Phys. Rev. Lett., 1997, 78, 1667
    [18] S.E.J. Bell, N.M.S. Sirimuthu, Chem. Soc. Rev., 2008, 37, 1025
    [19] T.H. Reilly, S.H. Chang, J.D. Corbman, G.C. Schatz, K.L. Rowlen, J. Phys. Chem. C, 2007, 111, 1689
    [20] M. Moskovits, Rev. Mod. Phys., 1985, 57, 783
    [21] K.A. Willets, R.P. Van Duyne, Ann. Rev. Phys. Chem., 2007, 58, 267
    [22] J.C. Hulten, R.P. Van Duyne, J. Vac. Sci. Techno. A, 1995, 13, 1553
    [23] H.X. Xu, J. Aizpurua, M. Kall, P. Apell, Phys. Rev. E, 2000, 62, 4318
    [24] S.Y. Ding, D.Y. Wu, Z.L. Yang, B. Ren, X. Xu, Z.Q. Tian, Chem. J. Chin. Univ. Chin., 2008, 29, 2569
    [25] J.I. Gersten, R.L. Birke, J.R. Lombardi, Phys. Rev. Lett., 1979, 43, 147
    [26] E. Burstein, Y.J. Chen, C.Y. Chen, S. Lundquist, E. Tosatti, Solid State Commun., 1979, 29, 567
    [27] E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J. Phys. Chem. C, 2007, 111, 13794
    [28] N. Felidj, J. Aubard, G. Levi, J.R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, F.R. Aussenegg, Phys. Rev. B, 2002, 65, 9
    [29] K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, Anal. Bioanal. Chem., 2008, 390, 113
    [30] P. Gao, M.J. Weaver, J. Phys. Chem., 1985, 89, 5040
    [31] B. Ren, G.K. Liu, X.B. Lian, Z.L. Yang, Z.Q. Tian, Anal. Bioanal. Chem., 2007, 388, 29
    [32] W. Xu, L. Zhang, J. Zhang, X. Hu, and L. Sun, Appl. Surf. Sci., 2009, 255, 6612
    [33] D.S. Knight, R. Weimer, L. Pilione, W.B. White, Appl. Phys. Lett., 1990, 56, 132
    [34] T.K. Sau, C.J. Murphy, J. Am. Chem. Soc., 2004, 126, 8648
    [35] P. Hildebrandt, M. Stockburger, J. Phys. Chem., 1984, 88, 5935
    [36] C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem., 2005, 77, 3261
    [37] R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science, 1995, 267, 1629
    [38] H. Wang, C.S. Levin, N.J. Halas, J. Am. Chem. Soc., 2005, 127, 14992 [39] M. Mulvihil, A. Tao, K. Benjauthrit, J. Arnold, P.D. Yang, Angew. Chem. Int. Ed., 2008, 47, 6456
    [40] G. Robert, Langmuir Blodgett Films, 1990, Plenum, New York
    [41] A. Tao, J.X. Huang, P.D. Yang, Acc. Chem. Res., 2008, 41, 1662
    [42] A. Tao, F. Kim, C. Hess, J. Goldberger, R.R. He, Y.G. Sun, Y.N. Xia, P.D. Yang, Nano Lett., 2003, 3, 1229
    [43] A. Tao, P. Sinsermsuksakul, P.D.Yang, Nat. Nanotechnol., 2007, 2, 435
    [44] M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, Sensor & Acuator. B, 1998, 51, 285
    [45] N.A. Abu Hatab, J.M. Oran, M.J. Sepaniak, ACS Nano, 2008, 2, 377
    [46] S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, P. Bartlett, Phys. Chem. Chem. Phys., 2007, 9, 104
    [47] C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B., 2003, 107, 7426
    [48] K.Y. Ng, Y. Lin, A.H.W. Ngan, J. Mech. Phys. Solid, 2011, 59, 251
    [49] C.R. Martin, Science, 1994, 266, 1961
    [50] O. Jessensky, F. Muller, U. Goselle, Appl. Phys. Lett., 1998, 72, 1173
    [51] H. Masuda, F. Hasegawa, S. Ono, J. Electrochem. Soc., 1997, 144, 127
    [52] Y. Lei, W. Cai, G. Wilde, Prog. Mater. Sci., 2007, 52, 465
    [53] A. Belwalkar, E. Grasing, W.V. Geertruyden, Z. Huang, W.Z. Misiolek, J. Memb. Sci., 2008, 319, 192
    [54] H. Masuda, K. Fukuda, Science, 1995, 268, 1466
    [55] H. Masuda, H. Yamada, M. Satoh, H. Asoh, Appl. Phys. Lett., 1997, 71, 2770
    [56] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Appl. Phys., 1998, 84, 6023
    [57] P. Parkhutic and V. I. Shershulsky,J. Phys. D: Appl. Phys. 1992, 25, 1258
    [58] F. Li, L. Zhang, R.M. Metzger, Chem. Mater., 1998, 10, 2470
    [59] F. Matsumoto, M. Ishikawa, K. Nishio, H. Masuda, Chem. Lett., 2005, 34, 509
    [60] H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, K. Nishio, J. Appl. Phys., 2001, 40, 1267
    [61] Y. Lei, W.K. Chim, Chem. Mater., 2005, 86, 103
    [62] J.C. Trefry, J.L. Monahan, K. Weaver, A. Meyerhofer, M.M. Markopolous, Z.S. Arnold, D.P. Wooley, I.E. Pavel, J. Am. Chem. Soc., 2010, 32, 10970
    [63] A.J. Creighton, C.G. Blatchford, A.M. Grant, J. Chem. Soc., 1979, 75, 790
    [64] T. Fujita, N. Iyi, T. Kusogi, A. Ando, T. Deguchi, T. Sota, Clays. Clay. Miner., 1997, 45, 77
    [65] A. Rauf, M. Mehmood, M.A. Rasheed, M. Aslam, J. Sol. State Elcetrochem., 2009, 13, 321
    [66] X. Zhao, P. Jiang, S. Xie, J. Feng, Y. Gao, J. Wang, D. Liu, L. Song, L. Liu, X. Dou, S. Luo, Z. Zhang, Y. Xiang, W. Zhou, G, Wang, Nanotech., 2006, 17, 35
    [67] G.Q. Ding, M.J. Zheng, W.L. Xu, W. Z. Shen, Nanotech., 2005, 16, 1285
    [68] A.P. Li, F. Muller, U. Goselle, Electrochem. Solid State Lett., 2000, 3, 131
    [69] W.L. Xu, H. Chen, M.J. Zheng, G.Q. Ding, W.Z. Shen, Optical Mater., 2006, 28, 1160
    [70] C. Kim, J.B. Park, H.G. Jee, S.B. Lee, J.H. Boo, S.K. Kim, J. Nanosci. Nanotech. , 2005, 5, 306
    [71] S.K. Park, J.S. Noh, W.B. Chin, D.D. Sung, Curr. Appl. Phys., 2007, 7, 180
    [72] D.A. Genov, A.K. Sarychev, V.M. Shalev, A. Wei, Nano Lett., 2004, 4, 153
    [73] K. Wong-ek, P. Eiamchai, M. Horprathum, V. Patthanaettakul, P. Limnonthakul, P. Chindaudom, N. Nuntawong, Thin Solid Films, 2010, 518, 7128
    [74] E.D. Palik, Handbook of Optical Constants of Solids, 1985, Academic Press, New York
    [75] J.I. Gersten, A. Nitzan, J. Chem. Phys., 1980, 73, 3023
    [76] P.F. Liao, A. Wokaun, J. Chem. Phys., 1982, 76, 751

    QR CODE
    :::