| 研究生: |
邱麒豪 Chi-Hao Chiu |
|---|---|
| 論文名稱: |
日本氣象同步衛星 Himawari-8 向日葵八號 之雲微物理參數反演驗證與評估 Evaluation of Retrieved Cloud Microphysical Parameters from Himawari-8 Observation |
| 指導教授: |
劉千義
Chian-Yi Liu 劉振榮 Gin-Rong Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 向日葵八號 、雲微物理參數 、對流系統 |
| 外文關鍵詞: | Himawari-8, cloud microphysics parameters, convection system |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2014年10月日本新一代的氣象同步衛星向日葵八號(Himawari-8)被送上軌道,其搭載涵蓋可見光、近紅外線與紅外線波段的Advanced Himawari Imager (AHI),提供高時間(10分鐘一筆)、高空間(2公里)解析度與多光譜(16個頻道)的觀測。本文將藉由AHI的觀測,反演高時空解析度雲微物理參數,此乃過往繞極衛星所無法提供的資料。隨後並透過被動式觀測的Aqua/MODIS、主動式觀測的CloudSat/CPR與CALIPSO/CALIOP交叉分析與驗證,評估參數的可靠性,期望未來能在一定可信度的情況下利用這些參數,探討雲的輻射效應收與氣候回饋過程。
由於南中國海是大尺度季風環流必經的水氣通道,常有旺盛對流的發展,且具備多重尺度天氣與氣候現象,而夏季季風肇始期間此區天氣系統轉換迅速,具有複雜結構之多樣雲種,因而選定此區域進行觀測與驗證,預期將得到更全面的研究成果。
經被動式觀測的分析及統計反演成果後,AHI與MODIS所分別反演的雲頂氣壓則具有一定程度的相似性,部分的差異與主動式觀測的交叉分析發現,確認此差異來自AHI較MODIS有更好的雲頂氣壓反演,進一步發現因AHI反演採用了CO2-slicing及較佳的大氣垂直熱力場,因此提升了對卷雲的反演。整體而言AHI雲頂氣壓、雲頂高度與雲光學厚度的反演皆有一定的水準,但雲滴有效半徑與MODIS有些許差距,尤其是高、薄之冰雲,因此期許未來有更進一步的資料協助確認其不確定性的範圍區間。
In October 2014, Japan launched Himawari-8 which is the most advanced geostationary orbit satellite in the world. Himawari-8/AHI provides high quality 16-channels reflectance/radiance data at every 10 minutes temporal resolution from 500 meter to 2 km spatial resolution. Because polar orbit satellite can’t provide the cloud microphysical parameters with high temporal and spatial resolution, this study develops the retrieval system that focuses on the Taiwan and its vicinity from the multichannel observation from geostationary orbit satellite.
In order to make sure the parameters quality from AHI retrieved, the research compare the retrieved cloud microphysical parameters with NASA EOS A-Train Aqua/MODIS, CloudSat/CPR and CALIPSO/CALIOP cloud products.
During the onset of Southeast Asia monsoon, the South China Sea (SCS) is the water vapor passage with large scale circulation, owning multiscale weather and climate phenomenon. It also contains rapid evolution for multiscale system, ranging from climate to weather. There are many kind of complex cloud system in summer monsoon onset, hence, the research region is chosen to conduct comprehensive comparison and verification study for retrieved cloud microphysical parameters among both passive and active seniors onboard polar orbiting satellites.
Initial validation of retrieved cloud microphysical properties indicates that there are good agreement between part of AHI and MODIS cloud-top pressure retrieval. From the cross analysis of active sensor observation, AHI has better CTP retrieval performance because it has better sensitivity in cirrus. Cloud-top pressure, cloud-top height and cloud optical thickness are all shown a reliable and good agreement between AHI and MODIS retrievals. There is discrepancy in cloud droplet effective radius between AHI and MODIS retrieval, in particular, when the cloud is optically thin and ice phase at high altitude.
林博雄、楊穎堅、劉清煌、徐世裴、楊菁華、吳靜軒、…隋中興,2016:南海-海洋大陸區對流與大尺度環流交互作用:2016冬季風預實驗。大氣科學,44,329-350。
Albrecht B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.
Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, …R. Yoshida, 2016: An introduction to Himawari-8/9—Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn., 94(2), doi:10.2151/jmsj.2016-009.
Chander, G., and B. Markham, 2003: Revised landsat-5 tm radiometric calibration procedures and postcalibration dynamic ranges. IEEE Geosci. Remote Sens., 41, 2674-2677.
Díaz, J. P., A. González, F. J. Expósito, J. C. Pérez, J. Fernández, M. García-Díez, D. Taima, 2015. WRF multi‐physics simulation of clouds in the African region. Quarterly Journal of the Royal Meteorological Society, 141, 692, 2737-2749.
Fischer, J., R. Preusker, C. Rathke, 2003: Cloud Top Pressure from Geo-stationary Satellite Observations in the Oxygen A-Band.
Hamann, U., and Coauthors, 2014: Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms. Atmos. Meas. Tech., 7, 2839-2867.
IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote-sensing of cloud, aerosol, and water-vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Geosci. Remote Sens., 30, 2-27.
King, M. D., S.-C. Tsay, S. E. Platnick, M. Wang, K.-N. Liou, 1997: Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase.
Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2001: A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment. J. Geophys. Res. Atmos., 106, 3475-3490.
Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the Importance of Microphysics and Macrophysics for Warm Rain in Marine Low Clouds. Part I: Satellite Observations. J. Atmos. Sci., 66, 2953-2972.
Li, J., H.-L. Huang, C.-Y. Liu, P. Yang, T. J. Schmit, H. Wei, E. Weisz, and W. P. Menzel, 2005, Retrieval of cloud microphysical properties from MODIS and AIRS, J. Appl. Meteorol., 44, 1526–1543.
Li, J., Menzel, W. P., and A. J. Schreiner, 2001: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements. J. Appl. Meteorol., 40, 312-330.
Li, J., W. P. Menzel, W. Zhang, F. Sun, T. J. Schmit, J. Gurka, and E. Weisz, 2004: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteorol., 43, 1619 - 1634.
Luo, Z. J., J. Jeyaratnam, S. Iwasaki, H. Takahashi, and R. Anderson, 2014: Convective vertical velocity and cloud internal vertical structure: An A-Train perspective. Geophys. Res. Lett., 41, 723-729.
Min, M., C. Wu, C. Li, H. Liu, N. Xu, X. Wu, L. Chen, …L. Dong, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: FengYun-4 series, J. Meteor. Res., 31(4), 708-719,doi: 10.1007/s13351-017-6161-z.
Menzel, W. P., 2012: Remote Sensing Applications With Meteorological Satellites. Madison, Wisconsin.
Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS, J. Appl. Meteorol., 22, 377-384.
Menzel, W. P., and Coauthors, 2008: MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results. J. Appl. Meteorol. Clim., 47, 1175-1198.
Mitchell, J. F. B., C. A. Senior, and W. J. Ingram, 1989: On CO2 and climate: A missing cloud feedback?, Nature, 341, 132–134
Nieman, S., J. Schmetz and W.P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32, 1559 - 1568.
Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements. J. Geophys. Res. Atmos., 116, D24206.
Petty, G. W., 2006: A First Course in Atmospheric Radiation. Madison, Wisconsin.
Platnick, S., M. D. King, K. G. Meyer, G. Wind, N. Amarasinghe, B. Marchant, G. T. Arnold, …J. Riedi, 2015: MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets.
Rockner, E., U. Schlese, J. Biercamp, P.Loewe, 1987: cloud optical depth feedbacks and climate modeling, Nature, 329, 138–140.
.Seidel, F. C., A. A. Kokhanovsky, and M. E. Schaepman, 2010: Fast and simple model for atmospheric radiative transfer. Atmos. Meas. Tech., 3, 1129-1141.
Schneider S. H. and R. E. Dickinson, 1974: Climate Modeling. Rev. Geophys. Space Phys., 78, 447-493.
Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the Next-Generation Advanced Baseline Imager on Goes-R. Bull. Amer. Meteor. Soc., 86, 1079-1096.
Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A Closer Look at the ABI on the GOES-R Series. Bull. Amer. Meteor. Soc., 98, 681-698.
Sohn, B. J., M. J. Choi, and J. Ryu, 2015: Explaining darker deep convective clouds over the western Pacific than over tropical continental convective regions. Atmos. Meas. Tech., 8, 4573-4585.
Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235–247.
Stephens, G. L., S. C. Tsay, J. P. W. Stackhouse, and P. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 1742–1753.
Stephens, G.L., 2005: Cloud feedbacks in the climate system: a critical review. J. Clim., 18, 237–273.
Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos., 113.
Twomey, S., 1974: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256.
Twomey, S. A., M. Piepgrass, T. L. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo, Tellus, Ser. B., 36, 356–366.
Twomey, S., 1977: The Influence of Pollution on the Shortwave Albedo of Clouds, J. Atmos. Sci., 34, 1149–1152.
Twomey, S., and T. Cocks, 1982: Spectral reflectance of clouds in the nearinfrared: Comparison of measurements and calculations. J. Meteor. Soc. Japan, 60, 583–592.
Wang, B., LinHo, Y. S. Zhang, and M. M. Lu, 2004: Definition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon. J. Climate, 17, 699–710.
Wang, T., E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue, 2016: Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications. J. Geophys. Res. Atmos., 121, 11620-11635.
Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811.
Weisz, E., H.-L. Huanga, J. Li, E. Borbasa, K. Baggetta, P. Thapliyalb, and L. Guan, 2007: International MODIS and AIRS processing package: AIRS products and applications. J. Appl. Remote Sens., 1, 013519.
Williams, K. D., M. A. Ringer, and C. A. Senior, 2003: Evaluating the cloud response to climate change and current climate variability. Climate Dyn., 20, 705–721.
Wylie D. P. and W. P Menzel, 1999: Eight years of global high cloud statistics using HIRS. J. Clim., 12, 170-184.
Yao, Z., J. Li, E. Weisz, A. Heidinger, and C.-Y. Liu, 2013: Evaluation of single field-of-view cloud top height retrievalsfrom hyperspectral infrared sounder radiances with CloudSat and CALIPSO measurements, J. Geophys. Res. Atmos., 118, 1–9.
Zeng, S., C. Cornet, F. Parol, J. Riedi, and F. Thieuleux, 2012: A better understanding of cloud optical thickness derived from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A-Train constellation. Atmos. Chem. Phys., 12, 11245-11259.
Zheng, Y., D. Rosenfeld, and Z. Li, 2016: Quantifying cloud base updraft speeds of marine stratocumulus from cloud top radiative cooling. Geophys. Res. Lett., 43, 11,407-411,413.
Zhou, D. K., W. L. Smith, X. Liu, A. M. Larar, H.-L. Huang, J. Li, M. J. McGill, and S. A. Mango, 2005: Thermodynamic and cloud parameter retrieval using infrared spectral data. Geophys. Res. Lett., 32, doi: 10.1029/2005GL023211.