跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳伊婷
Yi-Ting Chen
論文名稱: 以深度神經網路預測客戶終身價值
Applying DNN to Predict Customer Lifetime Value
指導教授: 陳炫碩
Shiuann-Shuoh Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 34
中文關鍵詞: 深度神經網路顧客生命週期價值離群值處理CLV預測
外文關鍵詞: Customer Lifetime Value (CLV), CLV prediction
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顧客生命週期價值(CLV)是衡量顧客對企業長期價值的重要指標。本研究以新鮮食品超市為例,利用深度神經網絡(DNN)模型來預測常客的CLV。通過對超市一年的消費數據進行預處理和特徵選擇,我們採用DNN與Elastic Net回歸相結合的模型,並使用移除離群值的方法來提高預測準確性。我們比較了不同預測期間的預測結果,並發現使用兩個月的消費數據來預測未來五個月的CLV效果最好。此外,我們還研究了各個特徵對CLV的重要性,並發現消費金額、月份、消費頻率以及不同類別購買金額比例對CLV有顯著影響。如果將來有更長時間範圍的數據集,我們可以嘗試去除季節因素,以預測超過一年的CLV。


    This research paper explores the application of Deep Neural Networks (DNN) in predicting Customer Lifetime Value (CLV) for regular customers in fresh food supermarkets. Real transaction data spanning 11 months is analyzed, and various data preprocessing techniques, outlier handling methods, and algorithms are compared to develop an accurate CLV prediction model. The findings highlight the importance of outlier removal and feature selection, with the combination of DNN and Elastic Net regression demonstrating the best performance. The study also identifies the optimal forecasting period. The research provides practical insights for businesses seeking to improve CLV forecasts and showcases the potential of DNN in CLV prediction across industries. Overall, this work contributes to advancing CLV prediction methodologies and offers a framework for enhancing accuracy in predicting CLV for regular customers in fresh food supermarkets.

    Chinese Abstract ................................i English Abstract ...............................ii Contents.......................................iii List of Figure..................................iv List of Table...................................iv Chapter1 Introduction............................1 Chapter2 Literature review ......................2  2.1 Customer Lifetime Value (CLV) .............2  2.2 Methods Based on RFM Statistics…………………………….3  2.3 Methods Based on Machine Learning…………………………3   2.3.1 Deep Neural Network (DNN)..............4   2.3.2 Regression Tree………………………………….....………………5   2.3.3 Gradient Boosting.....………………………..………………5 2.3.4 Elastic Net Regression................5 Chapter3 Methodology............................6 3.1 Data Pre-processing.........................6   3.1.1 Handle Outliers…………………………………….........7   3.1.2 Monthly Data…………………………………………………..……………7  3.2 Identifying Regular Customers using Rules…8   3.2.1 Features…………………………………………………………….......11  3.3 DNN Model………………………………………………………………………………...12  3.4 Experimental Evaluation……………….............13   3.4.1 Comparing Outlier Handling Methods for CLV Prediction……14   3.4.2 Comparing Forecasting Performance for Different Months .........................................16   3.4.3 Compare the performance of different algorithms…………17   3.4.4 Analysis of Important Features using SHAP Values……….........18 Chapter4 Conclusion.............................21  4.1Summary of Our Method…………………………………………......21  4.2 Research Limitations and Future Prospects…22 Chapter5 Reference..............................23 Appendix A : Features…………………………………………………………...……25

    1.Mutius, B. V., & Huchzermeier, A. (2021). Customized Targeting Strategies for Category Coupons to Maximize CLV and Minimize Cost. Journal of Retailing, 97(4), 764–779. https://doi.org/https://doi.org/10.1016/j.jretai.2021.01.004
    2.Jain, D., & Singh, S. S. (2002). Customer Lifetime Value Research in Marketing: A Review and Future Directions. Journal of Interactive Marketing, 16(2), 34–46. https://doi.org/https://doi.org/10.1002/dir.10032
    3.Gupta, S., & Zeithaml, V. (2006). Customer Metrics and Their Impact on Financial Performance. Marketing Science, 25(6), 718–739. https://doi.org/10.1287/mksc.1060.0221
    4.Rahim, M. A., Mushafiq, M., Khan, S., & Arain, Z. A. (2021). RFM-Based Repurchase Behavior for Customer Classification and Segmentation. Journal of Retailing and Consumer Services, 61(102566). https://doi.org/https://doi.org/10.1016/j.jretconser.2021.102566
    5.Gopal , P. R., & Sharma , T. (2021). Major Project Report On Analysis of Customer Lifetime Value Modeling Techniques. http://www.dspace.dtu.ac.in:8080/jspui/bitstream/repository/18473/1/5555Group6_MBA%28BA%29_report_Tushar_Pawan.pdf
    6.Chen, P. P., Guitart, A., Río, A. F. del, & Periáñez, Á. (2018). Customer Lifetime Value in Video Games Using Deep Learning and Parametric Models. IEEE. https://doi.org/10.1109/BigData.2018.8622151
    7.Kumaran, K., Pathak, P., Haque, R., Stynes, P. (2022). A Machine and Deep Learning Framework to Retain Customers Based on Their Lifetime Value. In: Roy, P.P., Agarwal, A., Li, T., Krishna Reddy, P., Uday Kiran, R. (eds) Big Data Analytics. BDA 2022. Lecture Notes in Computer Science, vol 13773. Springer, Cham. https://doi.org/10.1007/978-3-031-24094-2_6
    8.Bult, J. R., & Wansbeek, T. (1995). Optimal Selection for Direct Mail. Marketing Science, 14(4), 378–394. http://www.jstor.org/stable/184136
    9.Birant, D. (2011). Data Mining Using RFM Analysis. InTech. https://doi.org/10.5772/13683
    10.Berger, P. D., & Nasr, N. I. (1998). Customer lifetime value: Marketing models and applications. Journal of interactive marketing, 12(1), 17-30. https://doi.org/10.1002/(SICI)1520-6653(199824)12:1%3C17::AID-DIR3%3E3.0.CO;2-K
    11.Chamberlain, B. P., Cardoso, Â., Liu, C. h. B., Pagliari , R., & Deisenroth, M. P. (2017). Customer Lifetime Value Prediction Using Embeddings. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 23, 1753–1762. https://doi.org/https://doi.org/10.1145/3097983.3098123
    12.Wang, X.; Liu, T.; Miao, J. (2019). A Deep Probabilistic Model for Customer Lifetime Value Prediction. https://arxiv.org/abs/1912.07753
    13.Sifa, R.; Runge, J.; Bauckhage, C.; Klapper, D. (2018). Customer lifetime value prediction in non-contractual freemium settings: Chasing high-value users using deep neural networks and smote. In Proceedings of the 51st Hawaii International Conference on System Sciences. https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/16b392fd-f273-489a-a321-37e648376315/content
    14.Malthouse, E.C.; Blattberg, R.C. (2005). Can we predict customer lifetime value? Journal of Interactive Marketing, 19(1), 2–16. https://doi.org/10.1002/dir.20027
    15.Moro, S., Cortez, P., & Rita, P. (2014). A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, 62, 22–31. https://doi.org/https://doi.org/10.1016/j.dss.2014.03.001
    16.Ali V., Addhyan P., Angela H., & Rajesh P. (2016). An engagement-based customer lifetime value system for e-commerce. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 293–302. https: //www.kdd.org/kdd2016/papers/files/adf0755-vanderveldAbr.pdf
    17.Benk, G. Y., Badur, B., & Mardikyan, S. (2022). A New 360° Framework to Predict Customer Lifetime Value for Multi-Category E-Commerce Companies Using a Multi-Output Deep Neural Network and Explainable Artificial Intelligence. Information, 13(8), 373. https://doi.org/https://doi.org/10.3390/info13080373

    QR CODE
    :::