| 研究生: |
郭玉潔 Yu-chieh Kuo |
|---|---|
| 論文名稱: |
探討積層板試驗鄉進行動態離心模型試驗之邊界效應 Boundary effects of laminar box during the dynamic centrifuge modeling test |
| 指導教授: |
李崇正
Chung-jung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 離心模型試驗 、單軸向振動台 、積層版剪力試驗箱 、邊界效應 |
| 外文關鍵詞: | single axis shaking table, laminar box, boundary effect, centrifuge modeling tests |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用動態離心模型試驗,模擬砂土受振情形,並觀察不同位置處加速度歷時與傅氏幅變化量,以分析積層版試驗箱邊界對試驗結果所產生之影響。藉由改變加速度計陣列距箱壁距離與試體相對密度,分別探討(1)試驗箱壁對距邊界不同遠近的加速度計陣列,量測之試驗結果所造成的影響及影響範圍。(2)相對密度改變時,試驗箱邊界對試驗結果所造成的影響。(3)當土壤受振液化時,邊界對試驗結果的影響。
研究結果顯示,加速度計陣列擺放位置受試驗箱邊界效應影響甚大,距箱壁四分之一箱長處的影響變化量平均約10%,而距箱壁二十分之一箱長處的變化量則在20%浮動;砂土相對密度變化受試驗箱邊界效應的影響所占比例較小,符合對積層版剪力試驗箱的期待;試體相對密度變化時,影響百分比變化量改變幅度在±25%;當試體受振液化時,受邊界影響更明顯。
ABSTRACT
A series of dynamic centrifuge modeling tests are conducted to simulate sandy soil deposit subjected to base shaking. The aim of this study is to investigate the boundary effects of laminar box on the test data acquired from the accelerometer arrays located at different distances away from the box wall for various relative densities of soil and for the liquefied or non-liquefied soil. The acceleration histories and the Fourier’s spectra measured at different depths are adopted to indicate the severity of boundary effect.
The test results show that the horizontal distance between the wall of laminar box and the accelerometer array would affect the test results a lot. The average variations of the amplitude of acceleration are about 10% and 20%, respectively, when the accelerometer array lies at a quarter and one twentieths of container’s lengths, respectively, away from the wall of laminar box. Once the soil liquefies, the boundary effect is more significant. The relative density of soil plays a trivial role on the boundary effects, which agrees with the anticipation for the use of laminar box.
參考文獻
[1] 李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
[2] 翁作新,陳家漢,彭立先,李偉誠,「大型振動台剪力盒土壤液化試驗(II)-大型砂試體之準備與振動台初期試驗」,國家地震中心技術報告,NCREE-03-042,台北(2003)。
[3] 翁作新,陳家漢,程漢瑋,吳繼偉,「大型振動台剪力盒土壤液化試驗(III)- 飽和越南砂試體受振沉陷之探討」,國家地震中心技術報告,NCREE-06-019,台北(2006)。
[4] 彭立先,「大型剪力試驗盒砂土液化試驗之試體準備」,碩士論文,國立台灣大學土木工程學系,台北(2002)。
[5] 李偉誠,振動台大型剪力盒試驗砂土孔隙水壓之激發」,碩士論文,國立台灣大學土木工程學系,台北(2003)。
[6] 程漢瑋,「振動台大型剪力盒試驗砂土液化後沉陷量之研究」,碩士論文,國立台灣大學土木工程學系,台北(2004)
[7] 陳正發,于玉貞,「土工動力離心模型試驗研究發展」,岩石力學與工程學報,第25卷,增2,第4026-4033頁,2006。
[8] 蘇棟,李相崧「地震歷時對砂土抗液化性能影響的試驗研究」,岩石力學,第27卷,第十期,第1815-1818頁,2006。
[9] 劉晶波,劉祥慶,王宗網,「離心機振動臺試驗疊環式模型箱邊界效應」,北京工業大學學報,第34卷,第九期,第931-937頁,2008。
[10] Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France (1992).
[11] Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
[12] Brennan, A. J., and Madabhushi, S.P.G., “Effectiveness of vertical drains in mitigation of liquefaction,” Soil Dynamics and Earthquake Engineering , Vol. 22, PP. 1059–1065(2002).
[13] Coelho, P. A. L. F., Haigh, S. K. and Madabhushi, S. P. G., “Boundary effects in dynamic centrifuge modeling of liquefaction in sand deposits,” 16th ASCE Engineering Mechanics Conference (2003).
[14] Dief, H.M. and Figueroa, J. L., “Shake Table Calibration and Specimen Preparation for Liquefaction Studies in the Centrifuge,” ASTM Geotechnical Testing Journal, Vol. 26, NO. 4, pp. 402-409 (2003).
[15] Dong, S.U. and Li, X. S., “Centrifuge Tests on Earthquake Response of Sand Deposit Subjected to Multi-directional Shaking,” 16th ASCE Engineering Mechanics Conference (2003).
[16] Gazetas, G., “Vibrational characteristics of soil deposits with variable wave velocity,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 6, pp. 1-20 (1982).
[17] Hushmand, B., Scott, R. F. and Crouse, C. B., “Centrifuge liquefaction tests in a laminar box,” Geotechnique 38, NO. 2,PP. 253–262 (1988).
[18] Jafarzadeh, F., Torghabeh, E. A. and Jahromi, H. F., “Dynamic parameters of day sand using one dimensional shaking table tests,” Physical Modelling in Geotechnics: ICPMG, pp. 279-283(2006).
[19] Ko, H. Y. and Dewoolkar, M. M., “Modelling Liquefaction in Centrifuge,” Physics and mechanics of soil liquefaction, pp. 307-322 (1999).
[20] Laak, P. A. V., Taboada, V. M., Dobry, R. and Elgamal, A. W., “Earthquake Centrifuge Modelling Using a Laminar Box,” Dynamic geotechnical testing II, pp. 370-384.
[21] Madabhushi, S. P. G., Teymur, B., Haigh, S. K. and Brennan, A. J., “Modelling of Liquefaction and Lateral Spreading,” Department of Engineering, University of Cambridge, England.
[22] Oskay, C., Kallou, P. V., Zeghal, M. and Abdoum, T., “Visualization of the seismic response of soil systems,” Physical Modelling in Geotechnics: ICPMG, pp. 207-211(2002).
[23] Teymur, B. and Madabhushi, S. P. G., “Shear Stress-Strain Analysis of Sand in ESB Model Container by Harmonic Wavelet Techiques,” Physical Modelling in Geotechnics: ICPMG, pp. 201-206(2002)..
[24] Teymur, B. and Madabhushi, S. P. G., “Experimental study of boundary effects in dynamic centrifuge modelling,” Geotechnique 53, No. 7, pp. 655-663 (2003).
[25] Turan, A., Hesham, D. and Naggar, El., “Design and commissioning of a laminar soil container for use on small shaking tables,” Soil Dynamics and Earthquake Engineering Vol. 29, pp. 404-414(2009).
[26] Whitman, R. V., Lambe, P. C. and Kutter B L., "Initial Results from a Stacked Ring Apparatus for Simulation of a Soil Profile," International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 1105 – 1110 (1981).
[27] Yang, J., Sato, T., Savidis, S. and Li, X. S., “Horizontal and vertical components of earthquake ground motions at liquefiable sites,” Soil Dynamics and Earthquake Engineering Vol. 22, pp. 229-240(2002).
[28] Zeng X,and Schofield A N., “Design and performance of an equivalentshear-beam container for earthquake centrifuge modeling,” Geotechnique 46 , NO. 2, pp.83–102 (1996).