| 研究生: |
陳顯 Xian Chen |
|---|---|
| 論文名稱: |
多壁奈米碳管對結晶紫及鹼性紅9的吸附及脫附研究 Adsorption and Desorption of Crystal Violet and Basic Red 9 by Multiwalled Carbon Nanotubes |
| 指導教授: | 秦靜如 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 酰胺鍵 、朗繆爾模式 、遲滯現象 |
| 外文關鍵詞: | Amide bond, Langmuir model, Hysteresis |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討結晶紫及鹼性紅9在原始多壁奈米碳管及硝酸氧化過後多壁奈米碳管上的吸附及脫附之機制。對於奈米碳管的基本特性分析主要通過穿透式電子顯微鏡,比表面與孔隙度分析儀,熱重分析儀以及傅利葉轉換紅外光譜儀。氧化過後的奈米碳管其比表面積略高於原始奈米碳管,兩者的孔洞面積均主要來自于中孔。原始奈米碳管表面含有一部份羥基及羧基,氧化過後明顯增加了其羥基及羧基的含量。本研究中所有吸附及脫附的動力學實驗都在非常短時間內達到平衡,並符合擬二階吸附模式。另外,本研究中的所有吸附等溫實驗均符合Langmuir吸附模式。吸附容量方面,結晶紫在原始奈米碳管上最高,鹼性紅9在原始奈米碳管上次之,鹼性紅9在氧化過後奈米碳管上最低,造成這一現象的原因主要是由於吸附質的三維立體分子結構所帶來的空間位阻效應。脫附的遲滯現象僅在鹼性紅9的脫附實驗中發生,並未在結晶紫的脫附實驗中觀察到,這表明其脫附遲滯是由於鹼性紅9的胺基與碳管表面的羧基所形成的不可逆酰胺鍵。另外通過超音波震盪前後的脫附實驗對比排除了分子截留作用在脫附遲滯中的影響。
Batch adsorption and desorption experiments of crystal violet (CV) and basic red 9 (BR9) on multiwalled carbon nanotubes (MWCNTs) were conducted in this study. The characteristics of MWCNTs after oxidation by nitric acid (O-MWCNTs) as well as as-purchased MWCNTs (A-MWCNTs) were analyzed by transmission electron microscope, accelerate surface area and porosimeter system, thermogravimetric analysis, and Fourier transform infrared spectrophotometer. The surface area of O-MWCNTs was slightly higher than that of A-MWCNTs and mesopore contributed most in the pore area of both MWCNTs. O-MWCNTs contained more hydroxyl group and carboxyl group than A-MWCNTs due to the nitric acid treatment. All adsorption and desorption kinetics in this study reached equilibrium quite rapidly and fitted well by pseudo-second-order model while all adsorption isotherms were fitted well by Langmuir model. The adsorption capacity decreased in the order of CV on A-MWCNTs, BR9 on A-MWCNTs, and BR9 on O-MWCNTs, which indicated that the steric hindrance caused by the three-dimensional structure of adsorbates played an important role in the adsorption process. Desorption hysteresis observed on BR9 but not on CV. The hysteresis might be caused by the irreversible amide bond between BR9 and the surface groups of CNTs.
Agnihotri, S., Mota, J. P. B., Rostam-Abadi, M. and Rood, M. J., "Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles", Carbon, 44, 2376-2383, (2006).
Al-Johani, H. and Abdel Salam, M., "Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution", Journal of Colloid and Interface Science, 360, 760-767, (2011).
Apul, O. G. and Karanfil, T., "Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review", Water Research, 68, 34-55, (2015).
Apul, O. G., Shao, T., Zhang, S. J. and Karanfil, T., "Impact of carbon nanotube morphology on phenanthrene adsorption", Environmental Toxicology and Chemistry, 31, 73-78, (2012).
Chen, G. C., Shan, X. Q., Wang, Y. S., Pei, Z. G., Shen, X. E., Wen, B. and Owens, G., "Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes", Environmental Science and Technology, 42, 8297-8302, (2008).
Chin, C. J. M., Shih, L. C., Tsai, H. J. and Liu, T. K., "Adsorption of o-xylene and p-xylene from water by SWCNTs", Carbon, 45, 1254-1260, (2007).
Clark, M. D., Subramanian, S. and Krishnamoorti, R., "Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes", Journal of Colloid and Interface Science, 354, 144-151, (2011).
Duman, O., Tunç, S. and Polat, T. G., "Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: Kinetic, isotherm and thermodynamic studies", Applied Clay Science, 109-110, 22-32, (2015).
Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H. and Kaneko, K., "Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons", Nano Letters, 7, 583-587, (2007).
Huang, W. L., Yu, H. and Weber, W. J., "Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 1. A comparative analysis of experimental protocols", Journal of Contaminant Hydrology, 31, 129-148, (1998).
Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354, 56-58, (1991).
Kragulj, M., Tričković, J., Kukovecz, Á., Jović, B., Molnar, J., Rončević, S., Kónya, Z. and Dalmacija, B., "Adsorption of chlorinated phenols on multiwalled carbon nanotubes", RSC Advances, 5, 24920-24929, (2015).
Kuo, C. Y., "Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A", Desalination, 249, 796-982, (2009).
Kuo, C. Y., Wu, C. H. and Wu, J. Y., "Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters", Journal of Colloid and Interface Science, 327, 308-315, (2008).
Lagergren, S., "About the theory of so-called adsorption of soluble substances", Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39, (1898).
Li, X. Y., Pignatello, J. J., Wang, Y. J. and Xing, B. S., "New insight into adsorption mechanism of ionizable compounds on carbon nanotubes", Environmental Science and Technology, 47, 8334-8341, (2013).
Lin, D. H. and Xing, B. S., "Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups", Environmental Science and Technology, 42, 7254-7259, (2008).
Liu, W., Jiang, X. Y. and Chen, X. Q., "Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions", Journal of Solid State Chemistry, 229, 342-349, (2015).
Ma, X. M., Anand, D., Zhang, X. F. and Talapatra, S., "Adsorption and desorption of chlorinated compounds from pristine and thermally treated multiwalled carbon nanotubes", The Journal of Physical Chemistry C, 115, 4552-4557, (2011).
Mckay, G., Ho, Y. S. and Ng, J. C. Y., "Biosorption of copper from waste waters: A review", Separation and Purification Reviews, 28, 87-125, (1999).
Madrakian, T., Afkhami, A., Ahmadi, M. and Bagheri, H., "Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes", Journal of Hazardous Materials, 196, 109-114, (2011).
Njoku, V. O., Foo, K. Y., Asif, M. and Hameed, B. H., "Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption", Chemical Engineering Journal, 250, 198-204, (2014).
Oleszczuk, P., Pan, B. and Xing, B. S., "Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes", Environmental Science and Technology, 43, 9167-9173, (2009).
Pan, B., Lin, D. H., Mashayekhi, H. and Xing, B. S., "Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials", Environmental Science and Technology, 42, 5480-5485, (2008).
Pan, B. and Xing, B. S., "Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental Science and Technology, 42, 9005-9013, (2008).
Peng, H. B., Pan, B., Wu, M., Liu, Y., Zhang, D. and Xing, B. S., "Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process", Journal of Hazardous Materials, 233-234, 89-96, (2012).
Saleh, N. B., Pfefferle, L. D. and Elimelech, M., "Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications", Environmental Science and Technology, 42, 7963-7969, (2008).
Shek, T., Ma, A., Lee, V. and McKay, G., "Kinetics of zinc ions removal from effluents using ion exchange resin", Chemical Engineering Journal, 146, 63-70, (2009).
Sivarajasekar, N. and Baskar, R., "Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: Process modeling, analysis and optimization using statistical design", Journal of Industrial and Engineering Chemistry, 20, 2699-2709, (2014).
Tsai, R. S., Tayar, N. E. and B., "Toroidal coil centrifugal partition chromatography, a method for measuring partition coefficients", Journal of Chromatofraphy, 538, 119-123, (1991).
Wang, X. B., Liu, Y. Q., Qiu, W. F. and Zhu, D. B., "Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials", Journal of Materials Chemistry, 12, 1636-1639, (2002).
Wang, X. L., Liu, Y., Tao, S. and Xing, B. S., "Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes", Carbon, 48, 3721-3728, (2010a).
Wang, X. L., Lu, J. L. and Xing, B. S., "Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter", Environmental Science and Technology, 42, 3207-3212, (2008).
Wang, Z. Y., Yu, X. D., Pan, B. and Xing, B. S., "Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes", Environmental Science and Technology, 44, 978-984, (2010b).
Weber, W. J. and Morris, J. C., "Kinetics of adsorption on carbon solution", Journal of the Sanitary Engineering Division by American Society of Civil Engineers, 89, 31-59, (1963).
Wu, W. H., Jiang, W., Zhang, W. D., Lin, D. H. and Yang, K., "Influence of functional groups on desorption of organic compounds from carbon nanotubes into water: insight into desorption hysteresis", Environmental Science and Technology, 47, 8373-8382, (2013).
Yang, K., Wu, W. H., Jing, Q. F., Jiang, W. and Xing, B. S., "Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes", Environmental Science and Technology, 44, 3021-3027, (2010).
Yang, K. and Xing, B. S., "Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water", Environmental Pollution, 145, 529-537, (2007).
Zhu, D. Q. and Pignatello, J. J., "Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model", Environmental Science and Technology, 39, 2033-2041, (2005).
蔡涵哲, "以單壁奈米碳管吸附芳香族化合物吸附機制之探討", 國立中央大學環境工程研究所碩士論文, (2007).
陳珮蓉, "利用酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之特性研究", 國立中央大學環境工程研究所碩士論文, (2010).
蘇建智, "奈米碳管對硝基酚與銅混合溶液其吸附機制之探討", 國立中央大學環境工程研究所碩士論文, (2014).
吳錦昆, "氧化鋁吸附地下水中砷之研究", 國立成功大學環境工程學系碩士論文, (1999).
余翊菱, "以多壁奈米碳管吸附水中雙酚A之特性研究", 國立中央大學環境工程研究所碩士論文, (2010).