| 研究生: |
魏羿得 Yi-De Wei |
|---|---|
| 論文名稱: |
使用K指數型濾波器降低在脈波整形之峰對平均功率比 Peak-to-average power ratio (PAPR) reduction by pulse shaping using the K-exponential filter |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 峰對平均功率比 、K指數型濾波器 |
| 外文關鍵詞: | K-exponential filter, PAPR |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
K指數型濾波器是被設計用來在沒有符元間干擾情況下降低峰對平均功率比。關鍵點在於這種濾波器可以在同時保持相同頻寬下,其頻率響應隨著一個名為 的設計參數不同而跟著改變,這也是它的名稱由來。當頻寬的落滾率固定,則會存在一特定 值使得峰對平均功率比最小。模擬結果顯示出比起傳統所用的升餘弦濾波器,在正交分頻多功系統及交插分頻多重接取系統其最大峰對平均功率可分別降低0.25 dB及1 dB左右。此外,若是和同樣類型的多功能濾波器相比,它可在交插分頻多重接取系統擁有約略相當的成效,但在正交分頻多功系統卻有更好成效。
The K-exponential filter is designed for peak to average power ratio (PAPR) reduction without intersymbol interference (ISI). The key point is that the frequency responses of the filter which keeps the same bandwidth can vary with different designing parameter, the origin for the name. There is a minimum PAPR corresponding to an appropriate when roll-off factor α is fixed. The simulated result shows that the maximum PAPR reduction by the filters is about 0.25 dB in OFDM system and 1 dB in IFDMA system compared with the raised cosine filter. Besides, the K-exponential filter has almost equal performance in IFDMA system but better performance in OFDM system compared with the same kind of the versatile filter.
[1] H. G. Myung, J. Lim, and D.J. Goodman, “Single
carrier FDMA for uplink wireless transmission,” IEEE
Veh. Technol. Mag., vol. 1, no. 3, pp. 30-38, Sep.
2006.
[2] Tao Jiang, Member, IEEE, and Yiyan Wu, Fellow, IEEE,
“An overview: peak-to-average power ratio reduction
techniques for OFDM signals,” IEEE Trans. on
Broadcasting, vol. 54, No. 2, June 2008.
[3] R. O’Neill and L. B. Lopes, “Envelope variations and
spectral splatter In clipped multicarrier signals,”in
Proc. IEEE PIMRC’95, pp. 71–75, Toronto, Canada,
September 1995.
[4] H. G. Myung, J. Lim, and D.J. Goodman, “peak-to-
average power ratio of single carrier FDMA signals
with pulse shaping,” IEEE 17-th International
Symposium on PIMRC, September 2006.
[5] Norman C. Beaulieu, Fellow, IEEE, and Mohamed Oussama
Damen, Member, IEEE, “Parametric construction of
Nyquist-I pulses,” IEEE Trans. Commun., vol. 52, No.
12, pp. 2134–2142, Dec. 2004.
[6] Behrouz Farhang-Boroujeny, Senior Member, IEEE, “A
square-root Nyquist (M) filter design for digital
communication systems,” IEEE Trans. Commun., vol. 56,
No. 5, pp. 334–337, May 2008.
[7] Peter S. Rha and Sage Hsu, “Peak-to-average ratio
(PAR) reduction by pulse shaping using a new family of
generalized raised cosine filters,” IEEE Vehicular
Technology Conf., vol. 1, pp. 706-710, October 2003.
[8] Richard van Nee and Ramjee Prasad, “OFDM for wireless
multimedia communications,” the 1-th edition, 2000.
[9] ETSI, “Radio broadcasting systems: digital audio
broadcasting to mobile, portable and fixed receivers
,” European Telecommunication Standard, ETS 300-401,
Feb. 1995.
[10]H. Nyquist, “Certain topics in telegraph transmission
theory,” AIEE transactions, vol. 47, pp. 617-644,
1928.
[11]J. O. Scanlan, “Pulses satisfying the Nyquist
criterion,” IEE electronic letters, vol. 28, pp. 50-
52, Jan. 1992.
[12]L. E. Franks, “Further results on Nyquist’s problem
in pulse transmission,” IEEE Trans. Commun. Technol.,
vol. COM-16, pp. 337-340, Apr. 1968.
[13]Simon Haykin, “Communication systems,” the 4-th
edition, 2001.