| 研究生: |
孫碩亨 Shuo-Heng Sun |
|---|---|
| 論文名稱: |
利用FeNi雙金屬催化劑對CO2與乙烷進行乾重組和氧化脫氫反應 Reforming and Oxidative Dehydrogenation of Ethane with CO2 over a FeNi bimetallic catalysts |
| 指導教授: |
李岱洲
Tai-Chou Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 乾重組 、氧化脫氫 、合成氣 、蒸汽誘導自組裝法 、有序介孔 |
| 外文關鍵詞: | dry reforming, oxidative dehydrogenation, synthesis gas, evaporation-induced self-assembly method, ordered mesoporous |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳作為導致全球暖化的主要原因之一,影響世界各地陸續地出現許多極端氣候並對人民的生活造成嚴重影響。為了解決此問題,除了工廠大幅改善製程減少二氧化碳排放外,利用二氧化碳生產具有高經濟價值的產品或新材料,將是一種更有效和更有前途的方法。在本次的研究中,我們將採用二氧化碳與乙烷進行反應,並藉由乾重組與氧化脫氫反應生成乙烯與合成氣(氫氣和一氧化碳)。
在合成觸媒的階段,我們利用一步到位的蒸汽誘導自組裝法來合成觸媒,藉由結合多種前軀體分子,合成了具有二維六方結構的有序介孔材料。此方式合成的觸媒將會具有表面積大和熱穩定性高等等有助於提升反應的材料特性,並且能使負載金屬可以高度分佈在具有強金屬-載體相互作用的有序介孔通道中,有效地延緩了金屬顆粒的遷移和聚集。我們將利用X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)和氮氣吸附-脫附實驗等方式對觸媒進行材料鑑定,以此來確定是否成功的合成出我們預期的介孔功能材料。
本次實驗選用的負載金屬為鐵跟鎳,因為Ni對整體的反應具有較高的活性,而Fe則具有優秀的氧化還原性能,兩者價格比起貴金屬成本相對便宜且在工業上的使用較不會有限制。在活性測試中,可以得知負載鎳較多的觸媒會促進乾重組反應,產生較多的合成氣,而從負載鐵較多的觸媒得知金屬鐵會促進氧化脫氫反應,促使更多乙烯的生成。因此藉由調整鐵跟鎳的比例以及調整溫度的大小,就能在一定程度上控制產物生成的比例。
綜上所述,本研究運用蒸汽誘導自組裝技術開發出具有特定結構的介孔材料,作為催化二氧化碳再利用反應之觸媒擁有非常良好的材料性質及催化活性,並針對負載金屬的比例進行實驗,了解鐵跟鎳金屬各自對乾重組與氧化脫氫反應的影響,這些實驗結果將幫助我們更加了解觸媒對反應的影響,從而優化觸媒對反應的效果。
As one of the main contributors to global warming, carbon dioxide is affecting many people due to extreme weather conditions around the world. To address this problem, in addition to significantly improving factory processes to reduce CO2 emissions, using CO2 to produce high-value products or materials is a more effective and promising approach. In this study, we will use carbon dioxide to react with ethane and produce ethylene and synthesis gas (hydrogen and carbon monoxide) through dry reforming and oxidative dehydrogenation reactions.
In the catalyst synthesis stage, we used a one-step evaporation-induced self-assembly (EISA) method to synthesize an ordered mesoporous catalyst with a two-dimensional hexagonal structure by combining various precursor molecules. Catalysts synthesized this way possess material characteristics that contribute to their catalytic performance, such as high thermal stability and large surface area. Additionally, the catalysts allow for the metal to be evenly distributed in ordered mesoporous channels with strong metal-support interactions, which effectively controls the migration and aggregation of metal nanoparticles. Material characterization of the catalysts will be performed using various methods such as X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and nitrogen adsorption-desorption experiments to determine whether the desired mesoporous functional materials have been successfully synthesized.
For this experiment, we have chosen to load the metals Fe and Ni onto Al2O3 because Ni has a high activity for the overall reaction, and Fe has excellent oxidation reduction performance. Both metals are relatively inexpensive compared to precious metals and suitable for industrial use. In the activity test, we found that the catalyst loaded with more Ni promotes the dry reforming reaction and produces more syngas, while the catalyst loaded with more Fe promotes the oxidative dehydrogenation reaction and leads to more ethylene production. Thus, by adjusting the iron-to-nickel ratio and controlling the temperature, we can regulate the proportion of products to some extent.
In summary, this study utilizes evaporation-induced self-assembly technology to develop mesoporous materials with specific structures. These materials exhibit excellent material properties and catalytic activity as catalysts for carbon dioxide recycling reactions. Additionally, experiments were conducted on the proportion of loaded metals to understand the effects of iron and nickel on dry reforming and oxidative dehydrogenation reactions. These experimental results will help us to better understand the impact of catalysts on reactions and optimize their effects.
1. Roussanaly, S. and R. Anantharaman, Cost-Optimal CO2 Capture Ratio for Membrane-Based Capture from Different CO2 Sources. Chem. Eng. J., 2017. 327, 618-628.
2. Gatti, M., E. Martelli, D. Di Bona, M. Gabba, R. Scaccabarozzi, M. Spinelli, F. Vigano, and S. Consonni, Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO2 Capture in Natural Gas-Fired Power Plants. Energies, 2020. 13(3), 543.
3. Yu, Y., G. Yang, F. Cheng, and S. Yang, Effects of Impurities N2 and O2 on CO2 Storage Efficiency and Costs in Deep Saline Aquifers. J. Hydrol., 2021. 597, 126187.
4. Miocic, J.M., S.M.V. Gilfillan, J.J. Roberts, K. Edlmann, C.I. McDermott, and R.S. Haszeldine, Controls on CO2 Storage Security in Natural Reservoirs and Implications for CO2 Storage Site Selection. Int. J. Greenh. Gas Control., 2016. 51, 118-125.
5. Valluri, S., V. Claremboux, and S. Kawatra, Opportunities and Challenges in CO2 Utilization. J Environ Sci (China), 2022. 113, 322-344.
6. Dindi, A., D.V. Quang, L.F. Vega, E. Nashef, and M.R.M. Abu-Zahra, Applications of Fly Ash for CO2 Capture, Utilization, and Storage. J. CO2 Util., 2019. 29, 82-102.
7. Guo, M., K. Feng, Y. Wang, and B. Yan, Unveiling the Role of Active Oxygen Species in Oxidative Dehydrogenation of Ethane with CO2 over NiFe/CeO2. ChemCatChem, 2021. 13(13), 3119-3131.
8. Ray, K., S. Sengupta, and G. Deo, Reforming and Cracking of CH4 over Al2O3 Supported Ni, Ni-Fe and Ni-Co Catalysts. Fuel Process. Technol., 2017. 156, 195-203.
9. Song, Z., Q. Wang, C. Guo, S. Li, W. Yan, W. Jiao, L. Qiu, X. Yan, and R. Li, Improved Effect of Fe on the Stable NiFe/Al2O3 Catalyst in Low-Temperature Dry Reforming of Methane. Ind. Eng. Chem. Res., 2020. 59(39), 17250-17258.
10. Al-Awadi, A.S., S.M. Al-Zahrani, A.M. El-Toni, and A.E. Abasaeed, Dehydrogenation of Ethane to Ethylene by CO2 over Highly Dispersed Cr on Large-Pore Mesoporous Silica Catalysts. Catalysts, 2020. 10(1), 97.
11. Xie, Q., C. Miao, T. Lei, W. Hua, Y. Yue, and Z. Gao, Dehydrogenation of Ethane Assisted by CO2 over Y-doped Ceria Supported Au Catalysts. React. Kinet. Mech. Catal., 2020. 132(1), 417-429.
12. Lei, T.Q., Y.H. Cheng, C.X. Miao, W.M. Hua, Y.H. Yue, and Z. Gao, Silica-Doped TiO2 as Support of Gallium Oxide for Dehydrogenation of Ethane with CO2. Fuel Process. Technol., 2018. 177, 246-254.
13. Xie, Z., Y. Xu, M. Xie, X. Chen, J.H. Lee, E. Stavitski, S. Kattel, and J.G. Chen, Reactions of CO2 and Ethane Enable CO Bond Insertion for Production of C3 Oxygenates. Nat. Commun., 2020. 11(1), 1887.
14. Xie, Z.H., H.Y. Guo, E.W. Huang, Z.T. Mao, X.B. Chen, P. Liu, and J.G. Chen, Catalytic Tandem CO2-Ethane Reactions and Hydroformylation for C3 Oxygenate Production. ACS Catal., 2022. 12(14), 8279-8290.
15. Gomez, E., X. Nie, J.H. Lee, Z. Xie, and J.G. Chen, Tandem Reactions of CO2 Reduction and Ethane Aromatization. J Am Chem Soc, 2019. 141(44), 17771-17782.
16. Niu, X.R., X.W. Nie, C.H. Yang, and J.G. Chen, CO2-Assisted Propane Aromatization over Phosphorus-Modified Ga/ZSM-5 Catalysts. Catal Sci Technol, 2020. 10(6), 1881-1888.
17. Thomas, M., T. Partridge, B.H. Harthorn, and N. Pidgeon, Deliberating the Perceived Risks, Benefits, and Societal Implications of Shale Gas and Oil Extraction by Hydraulic Fracturing in the US and UK. Nat Energy, 2017. 2(5), 17054.
18. Yao, S.Y., B.H. Yan, Z. Jiang, Z.Y. Liu, Q.Y. Wu, J.H. Lee, and J.G. Chen, Combining CO2 Reduction with Ethane Oxidative Dehydrogenation by Oxygen-Modification of Molybdenum Carbide. ACS Catal., 2018. 8(6), 5374-5381.
19. Zhang, T., Z.C. Liu, Y.C. Ye, Y. Wang, H.Q. Yang, H.X. Gao, and W.M. Yang, Dry Reforming of Ethane over FeNi/Al-Ce-O Catalysts: Composition-Induced Strong Metal-Support Interactions. Engineering, 2022. 18, 173-185.
20. Xu, X., S.K. Megarajan, Y. Zhang, and H. Jiang, Ordered Mesoporous Alumina and Their Composites Based on Evaporation Induced Self-Assembly for Adsorption and Catalysis. Chem. Mater., 2019. 32(1), 3-26.
21. Gärtner, C.A., A.C. van Veen, and J.A. Lercher, Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 2013. 5(11), 3196-3217.
22. Chin, S.Y., Y.-H. Chin, and M.D. Amiridis, Hydrogen Production via the Catalytic Cracking of Ethane over Ni/SiO2 Catalysts. Applied Catalysis A: General, 2006. 300(1), 8-13.
23. Rodríguez, M.L., D.E. Ardissone, E. López, M.N. Pedernera, and D.O. Borio, Reactor Designs for Ethylene Production via Ethane Oxidative Dehydrogenation: Comparison of Performance. Ind. Eng. Chem. Res., 2010. 50(5), 2690-2697.
24. Bugrova, T.A., V.V. Dutov, V.A. Svetlichnyi, V.C. Corberan, and G.V. Mamontov, Oxidative Dehydrogenation of Ethane with CO2 over CrOx Catalysts Supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catalysis Today, 2019. 333, 71-80.
25. Lei, T.Q., C.X. Miao, W.M. Hua, Y.H. Yue, and Z. Gao, Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts. Catal Letters, 2018. 148(6), 1634-1642.
26. Koirala, R., R. Buechel, F. Krumeich, S.E. Pratsinis, and A. Baiker, Oxidative Dehydrogenation of Ethane with CO2 over Flame-Made Ga-Loaded TiO2. ACS Catal., 2014. 5(2), 690-702.
27. Beck, J.S., J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 1992. 114(27), 10834-10843.
28. Wu, J., F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, and D. Wu, Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv. Mater., 2019. 31(4), e1802922.
29. Malgras, V., H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K.C. Wu, J.H. Kim, and Y. Yamauchi, Nanoarchitectures for Mesoporous Metals. Adv. Mater., 2016. 28(6), 993-1010.
30. Deng, Y., J. Wei, Z. Sun, and D. Zhao, Large-pore Ordered Mesoporous Materials Templated from Non-Pluronic Amphiphilic Block Copolymers. Chem Soc Rev, 2013. 42(9), 4054-70.
31. Mandal, A.K., J. Mahmood, and J.B. Baek, Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. Chemnanomat, 2017. 3(6), 373-391.
32. Lin, B., G. Yang, and L. Wang, Stacking-Layer-Number Dependence of Water Adsorption in 3D Ordered Close-Packed g-C3N4 Nanosphere Arrays for Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed., 2019. 58(14), 4587-4591.
33. Wei, C., F. Xue, C. Miao, Y. Yue, W. Yang, W. Hua, and Z. Gao, Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts. Catalysts, 2016. 6(11), 171.
34. Zhang, Y., J. Deng, L. Zhang, and H. Dai, Preparation and Catalytic Performance of Fe-SBA-15 and FeOx/SBA-15 for Toluene Combustion. Sci. Bull., 2014. 59(31), 3993-4002.
35. Al-Awadi, A.S., A.M. El-Toni, S.M. Al-Zahrani, A.E. Abasaeed, M. Alhoshan, A. Khan, J.P. Labis, and A. Al-Fatesh, Role of TiO2 Nanoparticle Modification of Cr/MCM41 Catalyst to Enhance Cr-Support Interaction for Oxidative Dehydrogenation of Ethane with Carbon Dioxide. Applied Catalysis a-General, 2019. 584, 117114.
36. Rahmani, F. and M. Haghighi, One-pot Hydrothermal Synthesis of ZSM-5-CeO2 Composite as a Support for Cr-Based Nanocatalysts: Influence of Ceria Loading and Process Conditions on CO2-Enhanced Dehydrogenation of Ethane. Rsc Adv, 2016. 6(92), 89551-89563.
37. Wu, Z., Q. Li, D. Feng, P.A. Webley, and D. Zhao, Ordered Mesoporous Crystalline γ-Al2O3 with Variable Architecture and Porosity from a Single Hard Template. J. Am. Chem. Soc., 2010. 132(34), 12042-12050.
38. Cai, W.Q., J.G. Yu, C. Anand, A. Vinu, and M. Jaroniec, Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011. 23(5), 1147-1157.
39. Ma, Q.X., Y.X. Han, Q.H. Wei, S. Makpal, X.H. Gao, J.L. Zhang, and T.S. Zhao, Stabilizing Ni on Bimodal Mesoporous-Macroporous Alumina with Enhanced Coke Tolerance in Dry Reforming of Methane to Syngas. J. CO2 Util., 2020. 35, 288-297.
40. Yuan, Q., A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu, and C.-H. Yan, Facile Synthesis for Ordered Mesoporous γ-Aluminas with High Thermal Stability. J. Am. Chem. Soc, 2008. 130(11), 3465-3472.
41. Li, C., Q. Li, Y.V. Kaneti, D. Hou, Y. Yamauchi, and Y. Mai, Self-Assembly of Block Copolymers Towards Mesoporous Materials for Energy Storage and Conversion Systems. Chem. Soc. Rev., 2020. 49(14), 4681-4736.
42. Ogawa, M., Formation of Novel Oriented Transparent Films of Layered Silica-Surfactant Nanocomposites. J. Am. Chem. Soc., 1994. 116(17), 7941-7942.
43. Templin, M., A. Franck, A. Du Chesne, H. Leist, Y. Zhang, R. Ulrich, V.V. Schadler, and U. Wiesner, Organically Modified Aluminosilicate Mesostructures From Block Copolymer Phases. Science, 1997. 278(5344), 1795-8.
44. Yang, P.D., D.Y. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks. Nature, 1998. 396(6707), 152-155.
45. Li, X.Q., Z.Q. Yang, L. Zhang, Z.Q. He, R.M. Fang, Z.Q. Wang, Y.F. Yan, and J.Y. Ran, Effect of Pd Doping in (Fe/Ni)/CeO2 Catalyst for the Reaction Path in CO2 Oxidative Ethane Dehydrogenation/Reforming. Energy, 2021. 234, 121261.
46. Yan, B., S. Yao, S. Kattel, Q. Wu, Z. Xie, E. Gomez, P. Liu, D. Su, and J.G. Chen, Active Sites for Tandem Reactions of CO2 Reduction and Ethane Dehydrogenation. Proc. Natl. Acad. Sci. U.S.A., 2018. 115(33), 8278-8283.
47. Yan, B., X. Yang, S. Yao, J. Wan, M. Myint, E. Gomez, Z. Xie, S. Kattel, W. Xu, and J.G. Chen, Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts. ACS Catal., 2016. 6(11), 7283-7292.
48. Mutz, B., M. Belimov, W. Wang, P. Sprenger, M.-A. Serrer, D. Wang, P. Pfeifer, W. Kleist, and J.-D. Grunwaldt, Potential of an Alumina-Supported Ni3Fe Catalyst in the Methanation of CO2: Impact of Alloy Formation on Activity and Stability. ACS Catal., 2017. 7(10), 6802-6814.
49. Jabbour, K., P. Massiani, A. Davidson, S. Casale, and N. El Hassan, Ordered Mesoporous “One-Pot” Synthesized Ni-Mg(Ca)-Al2O3 as Effective and Remarkably Stable Catalysts for Combined Steam and Dry Reforming of Methane (CSDRM). Appl. Catal. B, 2017. 201, 527-542.
50. Pakhare, D. and J. Spivey, A Review of Dry CO2 Reforming of Methane over Noble Metal Catalysts. Chem. Soc. Rev., 2014. 43(22), 7813-37.
51. Lonergan, W.W., T. Wang, D.G. Vlachos, and J.G. Chen, Effect of Oxide Support Surface Area on Hydrogenation Activity: Pt/Ni Bimetallic Catalysts Supported on Low and High Surface Area Al2O3 and ZrO2. APPL CATAL A-GEN., 2011. 408(1-2), 87-95.
52. Yan, B., S. Yao, and J.G. Chen, Effect of Oxide Support on Catalytic Performance of FeNi‐based Catalysts for CO2-assisted Oxidative Dehydrogenation of Ethane. ChemCatChem, 2019. 12(2), 494-503.
53. Kim, K.H., Y.W. You, M.H. Jeong, B.G. Jung, M. Im, Y.J. Kim, I. Heo, T.S. Chang, and J.H. Lee, Influence of Support Acidity on CO2 Reforming of Ethane at High Temperature. J. CO2 Util., 2021. 53, 101713.
54. Seo, H.O., Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2) Reforming of Methane. Catalysts, 2018. 8(3), 110.
55. Das, S., M. Sengupta, J. Patel, and A. Bordoloi, A Study of the Synergy Between Support Surface Properties and Catalyst Deactivation for CO2 Reforming over Supported Ni Nanoparticles. Applied Catalysis A: General, 2017. 545, 113-126.
56. Li, B.T., Y. Luo, B. Li, X.Q. Yuan, and X.J. Wang, Catalytic Performance of Iron-Promoted Nickel-Based Ordered Mesoporous Alumina FeNiAl Catalysts in Dry Reforming of Methane. Fuel Process. Technol., 2019. 193, 348-360.
57. Zhang, R., H. Wang, S. Tang, C. Liu, F. Dong, H. Yue, and B. Liang, Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas. ACS Catal., 2018. 8(10), 9280-9286.
58. Yates, I.C. and C.N. Satterfield, Intrinsic Kinetics of the Fischer-Tropsch Synthesis on a Cobalt Catalyst. Energy Fuels, 1991. 5(1), 168-173.