| 研究生: |
曾建坤 曾建坤 |
|---|---|
| 論文名稱: |
以機器學習技術建構顧客回購率預測模型:以某手工皂原料電子商務網站為例 Building a customer repurchase rate prediction model with machine learning technology: Taking a handmade soap raw material e-commerce website as an example |
| 指導教授: |
胡雅涵
Ya-Han Hu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系在職專班 Executive Master of Information Management |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 機器學習 、資料探勘 、回購率 、電子商務 |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球電子商務網站購物人數的增長,全球各地的企業販賣商品均嘗試將資源集中在電子商務網站上來提高其競爭優勢,在台灣,手工皂產業如雨後春筍般蓬勃發展,每年創造數億的商機。因此,面對如此龐大的商機,提供手工皂的原料市場競爭亦非常激烈,研究個案已有經營多年業績良好的實體店面,畢竟實體傳統零售店面多有地域性限制,客戶多為區域型客戶,必須運用網路跨越地域,擴大市場接觸面,才能掌握網路無遠弗屆、一觸即發的商機。研究個案把行銷主要資源放在電子商務市場,經營網站商機又以開發網站新會員與舊會員回購商機為兩大主力。在市場上可以多重選擇購買廠商的情況下,客戶隨時會改變購買行為,所以行銷界認為獲得一個新客戶的成本是保留一個老客戶成本的5~6倍。因此,增加銷售資源在曾經購買的客戶群發掘更多的商業機會,客戶不斷的回頭購買產品,擁有越來越多忠實會員客戶,無可置喙的就會讓我們的銷售工作變得容易,業績穩定成長。透過文獻探討所羅列的研究中,整理出包含:顧客關係管理,網站與產品到訪點擊流量,與客戶的關係長度,購買次數、購買金額,Electronic Direct Mail (EDM)行銷收信、開信次數,購買紀錄,對特價產品偏好,退換貨因素,景氣與失業率等因素,皆被視為與電子商務回購有關的網站行為相關因子。透過機器學習的技術,尤其隨機森林、羅吉斯回歸、梯度提升機建立預測回購模型,AUC的表現均超過0.7以上。此外,本研究依Orange提供的資訊增益比技術,針對不同研究變數對目標變數所能提供的資訊值,來判斷其對預測回購模型的重要性排序,其前五名排序為1. 特價產品購買次數2. 寄送電子行銷信件打開信件次數3.加入會員以後購買產品次數4.會員最近三個月點閱網站首頁次數5.會員下訂單後取消產品次數。透過本研究掌握顧客最佳網站行為變數,構思出增加回購率的產品行銷方案及增加回購的會員數策略,達到建構預測模型的目的,有效吸引消費者回購,不斷創造佳績。
With the increase in the number of shoppers on e-commerce websites around the world, companies around the world are trying to concentrate resources on e-commerce websites to improve their competitive advantages. In Taiwan, the handmade soap industry is booming like mushrooms after a spring rain, creating hundreds of millions of business opportunities every year. . Therefore, in the face of such huge business opportunities, the market competition for raw materials for handmade soaps is also very fierce. The research case has been a brick and mortar store with good performance for many years. It is necessary to use the Internet to cross regions and expand market contacts in order to grasp the unlimited and imminent business opportunities of the Internet. In the case study, the main resources of marketing are placed in the e-commerce market, and the business opportunities of operating the website are the development of new website members and the repurchase of old members as the two main forces. In the market where there are multiple options for purchasing manufacturers, customers can change their purchasing behavior at any time, so the marketing community believes that the cost of acquiring a new customer is 5-6 times the cost of retaining an old customer. Therefore, increasing sales resources to explore more business opportunities in the customer base that once purchased, customers continue to return to buy products, and have more and more loyal member customers, which will make our sales work easier and performance. stable growth. Through the literature research, the researches listed include: customer relationship management, website and product visits, click traffic, relationship length with customers, number of purchases, purchase amount, Electronic Direct Mail (EDM) marketing receipts, and openings. , purchase history, preference for special products, return factors, prosperity and unemployment, etc., are all considered as factors related to website behavior related to e-commerce repurchase. Through machine learning techniques, especially random forests, logis regression, and gradient boosting machines to establish predictive repurchase models, the performance of AUC is more than 0.7. In addition, according to the information gain ratio technology provided by Orange, this study judges the importance of different research variables to the target variable according to the information value provided by the target variable, and the top five are ranked as 1. Special products Number of purchases 2. Number of emails sent and opened 3. Number of product purchases after joining as a member 4. Number of times a member has clicked on the homepage of the website in the last three months 5. Number of products cancelled after a member placed an order. Through this research, we grasp the best website behavior variables of customers, devise a product marketing plan to increase the repurchase rate and a strategy to increase the number of members who repurchase, achieve the purpose of constructing a prediction model, effectively attract consumers to repurchase, and continuously create good results.
中文部分
王信文, & 何巧齡. (2006).影響網路購物行為之關鍵因素分析. 經營管理論叢..
佘欣玲.(2019).整體學習應用於線上零售的回購預測.
呂世偉.(2013).資料探勘應用於平板電腦之再購分析─以3C通路商為例.國
立高雄科技大學資訊管理系研究學位論文.
呂亮緯.(2016).電子零售商網站功能與營運績效之實證研究..
何靖遠, & 賴宜楓. (2012). 線上消費者再購行為的實徵研究. 國立中央大學資訊管理學系, Journal of e-business.
李蓓雯. (2011).效益,資產專屬性, 品牌知名度, 線上口碑對網路購物消費者再購買意願之影響 _ 以法國為例. 政治大學企業管理研究所學位論文,1-62.
林爾陞. (2016).景氣循環對自我創業的影響:臺灣之實證研究.國立臺灣海洋大學應用經濟研究所.
查金祥. (2006). B2C 电子商务顾客价值与顾客忠诚度的關系研究 (Doctoral dissertation, 杭州: 浙江大学)。
侯驍紋. (2018).網路購物平台服務使用者 滿意度, 品牌忠誠度與再購意願之研究-以蝦皮購物為例.政治大學企業管理研究所 (MBA 學位學程)學位論文,1-147.。
周振宇.(2012).會員回購行為之分析.淡江大學資訊工程學系碩士班學位論文, 1-103.
周雅卿. (2018).手工香皂產品屬性,知覺價值及價格敏感度關係之研究. 台南應用科技大學生活服務產業系生活應用科學碩士班學位論文,1-105.
黃冠叡. (2006).消費者特性與虛擬通路購物意願關係之研究,國立成功大學管理學院碩士論文。
黃國祥. (2005)網路商店應用電子郵件行銷策略之研究,靜宜大學資訊管理研究所碩士論文。
陳建誌(2013).電子郵件行銷平台之改善規劃-以E公司為例,中央大學資訊管理學系論文。
湯宗泰、劉文良. (2011).資訊管理概論Web2.0思維,臺北市:旗標出版社。
陳伯駒. (2018)使用機器學習技法預測消費者的購買行為:以網站的點擊資料為例。國立台灣大學經濟學研究所學位論文,1-36.
陳文國,陳韻帆,吳姵萱,黃芷筠,蕭鈞綺,陳芷瑩.&廖晉毅.(2017).全通路行銷策略-以阿皂屋為例.朝陽科技大學行銷與流通管理系。
陳柏翔.(2015). Google Analytics 應用於線上網站績效分析-以購物網站為例.國立高雄第一科技大學-資訊管理研究所論文。
曾楚為. (2018).利用資料探勘技術預測顧客購買行為-以連鎖零售業為例. 臺灣大學國際企業學研究所學位論文,1-45.
張卿卿. (2016). 線上影音接收, 傳散與產製上傳行為探討: 多元動機之觀點. 中華傳播學刊, (30), 61-107.
張心馨. (2003).以 SOM 和 K-Mean 兩階段 Data Mining 的顧客分群方法應用於顧客關係管理和獲利性之績效評估研究.國立成功大學企業管理學系暨國際企業研究所國科會報告.
張豫雯. (2003).「應用資料探勘挖掘潛在電子商務客戶群」,大同大學資訊工程所碩士論文。
張翠華,孫莉梅, &於海斌(2008).定制產品退貨策略與模組化水準的聯合優化.中國工業工程與管理期刊, 13(2), 29-33.
韓賢靖, &朱博湧 (2012).成衣服飾電子商務經營關鍵成功因素探討-以Lativ為例 (Doctoral dissertation).
劉文良. (2018).電子商務與網路行銷(第六版),臺北市:碁峯出版社。
鍾永富. (2013).運用資料探勘技術協助行銷策略制定之研究-以家庭清潔用品為例. 臺北大學企業管理學系學位論文, 1-123.
謝銘元.(2020).經濟日報在線提供:
https://money.udn.com/money/story/8944/5110472(參考時 間:2021.05.30).
英文部分
Albadvi, A., & Shahbazi, M (2009). A hybrid recommendation technique based on product category attributes. Expert Systems with Applications, 36(9),11480-11488.
Aren, S., Güzel, M., Kabadayı, E., & Alpkan, L. (2013). Factors affecting repurchase intention to shop at the same website. Procedia-Social and Behavioral Sciences, 99, 536-544.
Bulut, Z. A(2015) .Determinants of repurchase intention in online shopping: a Turkish consumer’s perspective. International Journal of Business and Social Science, 6(10), 55-63.
Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13, 1063-1095.
Field, J. M., Heim, G. R., and Sinha, K. K(2004). Managing quality in the e-service system:Development and application of a process model. Production and Operations Management, Vol.13, No.4, pp.291–306..
Feindt, M., & Kerzel, U. (2006). The NeuroBayes neural network package. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 559(1), 190-194.
Huang, S (2021). AI-based Repeat Buyers Prediction System using Deep Learning. In 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP) (pp. 800-806). IEEE.
Hellier, P. K., Geursen, G. M., Carr, R. A., and Richard, J. A (2003) .Customer repurchase intention: A general structural equation model. European Journal of. Marketing, 37(11), 1762-1800
Haag, Cumming & Dawkins (2000). Management Information Systems,Irwin McGraw-Hill.
Kim, J., Ji, H., Oh, S., Hwang, S., Park, E., & del Pobil, A. P(2021) A deep hybrid learning model for customer repurchase behavior. Journal of Retailing and Consumer Services, 59, 102381.
Kumar, A., Kabra, G., Mussada, E. K., Dash, M. K., & Rana, P. S(2019) Combined artificial bee colony algorithm and machine learning techniques for prediction of online consumer repurchase intention. Neural Computing and Applications, 31(2), 877-890.
Kim, J., Ji, H., Oh, S., Hwang, S., Park, E., & del Pobil, A. P(2021) A deep hybrid learning model for customer repurchase behavior. Journal of Retailing and learning.
Lin, C., & Lekhawipat, W(2014) Factors affecting online repurchase intention . Industrial Management & Data Systems.
Martínez, A., Schmuck, C., Pereverzyev Jr, S., Pirker, C., & Haltmeier, M. (2020). A machine learning framework for customer purchase prediction in the non-contractual setting. European Journal of Operational Research, 281(3), 588-596.
Park, Y. A., and Gretzel, U (2010) ‘Influence of Consumers' online Decision-Making Styleon Comparison Shopping Proneness and Perceived Usefulness Of Comparison ShoppingTools,’ Journal of Electronic Commerce Research, Vol.11, No.4, pp.342-354.
Pfeifer, P. (2005), “The optimal ratio of acquisition and retention costs,” Journal of Targeting, Measurement and Analysis for Marketing, 13(2), 179-188.
Patricia B. Seybold著,謝偉勛譯(2000),Customers.com(e網打盡),台北市:藍鯨出版。
Richard "Rich" Lesser , Ming-Je Tang & Eve Li (2015) Harvard Business Review available at https://www.hbrtaiwan.com/article_content_AR0003034.html (accessed 13 NOV 2021).
Selnes, F(1993) An Examination of the Effect of Product Performance on Brand Reputation Satisfaction and Loyalltly. European Jourmal of Marketing, 27, 19-35.
Swaminathan, V., Lepkowska-White, E., & Rao, B. P. (1999). Browsers or buyers in cyberspace? An investigation of factors influencing electronic exchange. Journal of computer-mediated communication, 5(2), JCMC523.
Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
Zhang, W., & Gao, F. (2011). An improvement to naive bayes for text classification. Procedia Engineering, 15, 2160-2164.