跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張庭維
Ting-wei Chang
論文名稱: 以定光電流量測之吸收係數分析矽薄膜缺陷密度之研究
Analyzing the defect density of silicon thin film from optical absorption
指導教授: 李正中
Cheng-Chung Lee
陳昇暉
Sheng-Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 缺陷密度矽薄膜吸收係數
外文關鍵詞: absorption coefficient, defect density, silicon thin film
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石化燃料具有耗竭性與污染性等問題,矽薄膜太陽能電池作為未來
    的替代性可再生能源之一,目前仍有轉換效率不高以及劣化嚴重等瓶
    頸。為了提高電池轉換效率以及可靠性,矽薄膜缺陷密度量測扮演著
    很重要的角色,定光電流量測法為簡易且方便之測量法,可量測具有
    低缺陷密度之樣品。本文使用定光電流量測法量測非晶矽薄膜,為了
    更為準確的分析缺陷密度,本研究基於非晶能態分佈理論,並使用擬
    合吸收係數曲線法計算出缺陷密度。
    對於微晶矽缺陷密度分析上,本研究引入等效介質理論並結合非晶
    矽吸收係數的計算,成功的解釋微晶矽吸收係數隨結晶率的變化,且
    可擬合出定光電流量測出之微晶矽吸收曲線之形貌,進而計算出微晶
    矽薄膜裡含有的懸浮鍵密度。
    此外,實驗證明使用定光電流量測出之a (1.4eV )與a (0.9eV )之間比值,可用來評定微晶矽薄膜太陽能電池本質層之品質,而經由本研究提出的分析方法,可證明a (1.4eV )與a (0.9eV )分別正比於結晶率與懸浮鍵密度。


    There is on hand the issue of the environmental impact of conventional energy sources. As the result, silicon thin film solar cells become one of alternative sources of energy. But it still needed to be improved by different
    methods. The dangling-bond has been studied in the past years as an important measure to optimize the quality of silicon thin film solar cell.
    Dangling-bond is the main defect in a-Si:H and μc-Si:H, influencing the carrier transport and therefore are crucial for photovoltaic devices. Constant photocurrent measurements was known to be sensitive for evaluating the
    bulk defect density from optical absorption. We calculated the inter-band absorption form the model of density of state in a-Si. Thus the defect density could be determined from the absorption coefficient by curve fitting
    For μc-Si:H, which exists a large variety of structure compositions ofamorphous silicon and crystalline silicon grains. The absorption in μc-Si:H
    is influenced not only by the amount of defects but also by the crystallization volume fraction. We calculate the absorption spectral of microcrystalline silicon by applying the effective-medium theory. The results explain successfully that absorption coefficient at 1.4eV was
    proportional to the crystallization volume fraction and absorption coefficient at 0.9eV was proportional to the dangling bound concentration of microcrystalline silicon. The defect density in amorphous phase could be determined from the absorption coefficient by curve fitting.
    By dividing the absorption coefficient at 1.4eV with the value at 0.9eV, we used the factor to judge quality of μc-Si:H and predict PV device performance by multiplying Voc with Isc when using this layer as its intrinsic layer. The results show a good relationship between the quality
    factor and the product of open-circuit voltage and short-circuit current.

    第一章 緒論 ....................................................................................... 1 1.1 前言 ........................................................................................................................ 1 1.2 研究背景 ................................................................................................................. 4 1.2.1 含氫非晶矽薄膜(a-Si:H) ................................................... 4 1.2.2 含氫微晶矽薄膜(μc -Si:H) ................................................. 6 1.2.3 矽薄膜缺陷特性與量測方法 ................................................. 7 1.3 文獻回顧 ................................................................................................................. 9 1.4 研究動機 ............................................................................................................... 12 1.5 論文架構 ............................................................................................................... 12 第二章 基本理論 .............................................................................. 14 2.1 導電率量測 ......................................................................................................... 14 2.1.1 暗電導量測 .......................................................................... 14 2.1.2 穩態光電導量測 .................................................................. 15 2.2 定光電流量測法 .............................................................................................. 16 2.2.1 儀器架構 .............................................................................. 16 2.2.2 基本理論 .............................................................................. 18 2.3 吸收係數分析 .................................................................................................... 20 2.3.1 直接能隙材料 ...................................................................... 20 2.3.2 態密度(Density of State)分佈 ......................................... 20 2.3.3 吸收係數 .............................................................................. 23 第三章 非晶矽缺陷密度分析 ........................................................... 25 3.1 實驗步驟 ............................................................................................................... 25 3.1.1 實驗方法 .............................................................................. 25 3.1.2 定光電流量測流程 .............................................................. 25 3.1.3 量測結果 .............................................................................. 30 3.2 吸收係數模擬 .................................................................................................... 31 3.2.1 能態密度模型(Density of State) ........................................... 31 3.2.2 吸收係數計算 ...................................................................... 33 3.3 結果與討論 ......................................................................................................... 37 3.3.1 帶尾特徵能量(1.4eV<E<1.8eV) ....................................... 37 3.3.2 缺陷密度(E<1.4eV) ......................................................... 40 3.3.3 擬合吸收係數曲線 .............................................................. 46 第四章 微晶矽缺陷密度分析 ........................................................... 52 4.1 實驗步驟 ............................................................................................................... 52 4.1.1 實驗方法 .............................................................................. 52 4.1.2 實驗結果 .............................................................................. 53 4.2 吸收係數模擬 .................................................................................................... 56 4.2.1 結構分析 .............................................................................. 56 4.2.2 基本假設 .............................................................................. 57 4.2.3 等效介質理論(Effective Medium Theory) ....................... 58 4.2.4 參數選擇 .............................................................................. 59 4.2.5 計算過程 .............................................................................. 61 4.2.6 缺陷密度定義 ...................................................................... 63 4.2.7 散射現象 .............................................................................. 63 4.3 結果與討論 ......................................................................................................... 64 4.3.1 微晶矽結晶率變化 .............................................................. 64 4.3.2 微晶矽結晶率變化(固定c D Nm ) ......................................... 67 4.3.3 微晶矽缺陷密度變化 .......................................................... 70 4.3.4 吸收係數曲線擬合 .............................................................. 74 第五章 微晶矽薄膜品質因子 ........................................................... 81 5.1 品質因子 ............................................................................................................... 81 5.1.1 微晶矽品質(m c-Si Quality) ........................................... 81 5.1.2 品質因子定義( Quality factor ) ....................................... 81 5.2 實驗步驟 ............................................................................................................... 82 5.2.1 實驗方法 .............................................................................. 82 5.2.2 量測結果 .............................................................................. 83 5.3 結果與討論 ......................................................................................................... 85 第六章 結論 ..................................................................................... 89 第七章 未來工作 .............................................................................. 90 參考文獻 ............................................................................................... 91

    [1] L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E.
    Fortunato, R. Martins, Sol Energ Mat Sol C 87/1-4 (2005) 349.
    [2] 黃冠禎, 太陽能的發展與應用, 中山工商, 2008.
    [3] R.C. Chittick, J.M. Alexander, M.E. Sterling, J. Electrochem. Soc 116
    (1969) 77.
    [4] W.E. Spear, P.G. LeComber, Solid State Communications 17 (1975)
    1193.
    [5] D.E. Carlson, C.R. Wronski, Applied Physics Letter 28/11 (1973) 671.
    [6] Staebler, Wronski, Appl. Phys. Lett. 31 (1977) 292.
    [7] R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University
    Press, 1991.
    [8] S.O. Kasap, Principles of Electronic Materials and Devices,
    McGraw-Hill, 2005.
    [9] M. Stutzmann, W.B. Jackson, C.C. Tsai, Physical Review B 32/1 (1985)
    23.
    [10] R.E.I. Schropp, M. Zeman, Amorphous and microcrystalline silicon
    solar cells : modeling, materials, and device technology, Kluwer
    Academic, Boston, 1998.
    [11] S. Veprek, V. Marecek, Solid state Electron 11 (1968) 683.
    [12] J. Meier, Mater. Res. Soc. Symp. Proc. 420 (1996) 3.
    [13] K. Prasad, F. Finger, S. Dubail, A. Shah, M. Schubert, Journal of
    Non-Crystalline Solids 137-138/Part 2 (1991) 681.
    [14] O. Vetterl, R. Carius, L. Houben, C. Scholten, M. Luysberg, A.
    Lambertz, F. Finger, H. Wagner, Mat. Res. Soc. Symp. Proc 609
    (2000).
    [15] F. Finger, S. Klein, T. Dylla, A.L.B. Neto, O. Vetterl, R. Carius, Mater.
    Res. Soc. Symp. Proc. 715 (2002).
    [16] W.B. Jackson, N.M. Armer, A.C. Boccara, a.D. Fournier, Appl. Opt 20
    (1981) 1333.
    [17] M. Vanecek, J. Kocka, J. Stuchlik, A. Triska, Solid State
    Communications 39/11 (1981) 1199.
    [18] T. Shimizu, X. Xu, H. Kidoh, A. Morimoto, M. Kumeda, J. Appl. Phys
    64 (1989) 5045.
    [19] H.G. Grimmeiss, L.-A. Ledebo, Journal of Applied Physics 46/5 (1975)
    2155.
    [20]M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Phys. Rev. Letters 22 (1969)
    1065.
    [21] F. Siebke, S. Yata, Y. Hishikawa, M. Tanaka, Journal of
    Non-Crystalline Solids 227-230/Part 2 (1998) 977.
    [22] M. Vanecek, A. Poruba, Applied Physics Letters 80/5 (2002) 719.
    [23] Meillaud, F. Vallat-Sauvain, E. Niquille, X. Dubey, M. Bailat, J. Shah,
    A. Ballif, IEEE, 2005.
    [24] S. Klein, F. Finger, R. Carius, T. Dylla, J. Klomfass, Applied Physics
    Letters 102/10 (2007) 103501.
    [25] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, S. Nakano, Solar
    Energy Materials and Solar Cells 34/1-4 (1994) 541.
    [26] D. Ritter, K. Weiser, Optics Communications 57/5 (1986) 336.
    [27] A. Triska, J. Kocka, P.l. Vanecek, Disordered Semiconductors,
    Plenum, New York, 1987.
    [28] T. Tiedje, J.M. Cebulka, D.L. Morel, B. Abele, Phys. Rev. Lett. 46
    (1981) 1425.
    [29] K. Winer, I. Hirabayashi, L. Ley, Phys. Rev. Lett. 60 (1988).
    [30] S. Aljishi, J.D. Cohen, S. Jin, L. Ley, Phys. Rev. Lett. 64 (1990) 2811.
    [31] R. Crandall, Phys. Rev. Lett. 44 (1980) 749.
    [32] G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev.
    Lett. 47 (1981) 1480.
    [33] M. Vanecek, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, A. Triska, Sol.
    Energy Mat. 8 (1983) 411.
    [34] P.W. Anderson, Phys. Rev. Lett. 34 (1975) 935.
    [35] R.A. Street, N.F. Mott, Phys. Rev. Lett. 34 (1975) 953.
    [36] M.Vanecek, A. Abraham, O. Stika, J. Stuchlik, J. Kocka, Phys. Stat. Sol
    83 (1984) 617.
    [37] J. Poortmans, V. Arhipov, Thin Film Solar Cells Fabrication,
    Characterization and Applications, John Wiley & Sons Ltd, 2006.
    [38] S. Sherman, S. Wagner, R.A. Gottscho, Appl. Phys. Lett. 69 (1996) 21.
    [39] H. Fritzsche (Ed.), Amorphous silicon and related material, World
    Scientific.
    [40] P. Sladek, Y. Bouizem, M.L. Theye, P.R.i. Cabarrocas (Eds.),
    Proceedings of the 11th E.C. Photovoltaic Solar Energy Conference,
    Switzerland, 1993.
    [41] H. Curtins, M. Favre, in: H. Fritzsche (Ed.), Advances in Amorphous
    Semiconductors: Amorphous Silicon and Related Materials, World
    Scientific, Singapore, 1989, p. 329.
    [42] A.H. Mahan, M. vanecek, Stability of Amorphous Silicon Material
    and Solar Cells, Denver, 1991.
    [43] K. Pierz, W. Fuhs, H. Mell, Phil. Mag B63 (1991) 123.
    [44] O. Astakhov, R.C.a.F. Finger, Y. Petrusenko, V. Borysenko, D.
    Barankov, PHYSICAL REVIEW B 79/104205 (2009).
    [45] J. C. M. Garnett, Philos. Trans. R. Soc. London 203 (1904) 385.
    [46] Tatiana Globus, Stephen H. Jones, Thomas Digges, Jr.,”Analysis of
    Refractive Index and Absorption Coefficient of Silicon Membranes”,
    Proceedings of the 1997 International Semiconductor Device Research
    Symposium, Charlottesville, VA, ISBN1-880920-05-0
    [47] D.E. Aspens [ in Properties of Silicon (INSPEC, IEE ,London, UK,
    1988) ch.2 p.59-80
    [48] C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson
    J. Appl. Phys. (USA) vol. 83 (1998) p. 3323-36
    [49] E.V. Loewenstein, D.R. Smith, R.L. Morgan [ Appl. Opt. (USA) vol.
    12 (1973) p. 398-406]
    [50] E. Hecht , Optics (Adison-Wesley, Reading Mass, 1987) p. 113
    [51] Robert Hull, Editor, Properties of Crystalline Silicon, emis
    DataReviews Series No 20, INSPEC, IEE, London, UK, 1999, ISBN 0
    85296 933 3, see D.E. Aspnes, Chapter Editor, Optical Properties of Si,
    pg 677 20.
    [52] H.C.V.d. Hulst, Light Scattering by Small Particles, Wiley, New York,
    1957.
    [53] A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J.
    Meier, P. Torres, A. Shah, JOURNAL OF APPLIED PHYSICS 88/1
    (2000) 148.
    [54]T. Merdzhanova, R. Carius, S. Klein, F. Finger, D. Dimova-Malinovska,
    Thin Solid Films 511-512 (2006) 394.
    [55] J. Kočka, T. Mates, M. Ledinský, H. Stuchlíková, J. Stuchlík, A. Fejfar,
    Thin Solid Films 516 (2008) 4966.

    QR CODE
    :::