| 研究生: |
戴振宇 Chen Yu Dai |
|---|---|
| 論文名稱: |
2-kW級太陽追蹤器結構變形與追日偏差分析 Analysis of Structural Deformation and Misalignment in a 2-kW Solar Tracker |
| 指導教授: |
林志光
Chih-Kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 偏差角 、太陽光電 、太陽追蹤器 、結構變形 |
| 外文關鍵詞: | deformation, structural, photovoltaic, solar tracker, misalignment |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在利用有限元素分析法(FEA),探討一組2-kW級太陽光電系統之太陽追蹤器受到重力及風力作用下,其結構變形和PV模組的追日偏差量。分析的條件分別為無風之自重狀態,以及在風速為7 m/s、12 m/s和37.5 m/s之情況,在每個風速作用下又各別分為風從太陽追蹤器的正面(0o)至背面(180o),以30o為一間隔吹來之七種風向;而在風速37.5 m/s的作用下,太陽追蹤器停止運作並以仰角0o插上安全插銷作為分析條件。此外,本研究亦分析此太陽追蹤器之自然振動頻率作為設計及安裝參考,避免結構共振之發生。同時藉由量測此太陽追蹤器二個選定位置在實際操作情況下之應變變化,與模擬結果作比對,以驗證本研究所建立有限元素分析模型之有效性。比對結果顯示,模擬結果之應變改變趨勢和實驗結果一致,此一致性證實本研究所建立之有限元素分析模型之有效性,可適用於分析太陽光電系統之結構變形。
根據von Mises破損準則,模擬結果顯示此太陽追蹤器在受到重力加上風速為7 m/s、12 m/s或37.5 m/s的作用下,預期各個組件將不會有永久變形之情形發生。模擬結果亦顯示此追蹤器在不同追日角度受重力及不同風力作用下,PV模組追日偏差量的變化趨勢與其總位移的變化趨勢一致。此外,產生較大追日偏差量的PV模組皆位於受風前緣面板中的一個。除了在風速37.5 m/s的作用下,在其他所有分析情況中,PV模組在風速為12 m/s並從其正面(0o)吹來的情況下會有最大的追日偏差量,其值為1.48o。由於此偏差角對於此PV模組發電效率影響很小,所以預期此太陽追蹤器在風速為12 m/s的作用下仍可以正常運作,不會有明顯的發電效率下降,同時在正常的運作之下,不會有結構破損之情形發生。自然振動頻率分析結果顯示其前六個振動模態的自然頻率值落在3.85 Hz至11.4 Hz之間,未來在架設此太陽追蹤器時應考慮所在地之風場的頻率。
The purpose of this study is using finite element analysis (FEA) to investigate the effects of gravity and wind loadings on the structural deformation and misalignment of solar radiation in a 2-kW photovoltaic (PV) system. Several loading conditions, including gravity alone and gravity plus wind speeds of 7 m/s, 12 m/s, and 37.5 m/s with blowing direction varying from front (wind direction of 0o) to back (wind direction of 180o) sides with an interval of 30o, are applied to calculate the stress distribution and structural deformation. The misalignment of solar radiation induced by structural deformation is calculated. Moreover, to avoid the damage caused by resonance, natural frequencies of vibration for the given PV system are also determined. A comparison of the simulation and measurement results of strain change at two selected locations in the given solar tracker during field operation is made to validate the constructed FEA model. A reasonable agreement of the simulation and measurement results is found such that the constructed FEA model is validated to be effective in assessment of the structural integrity of a PV system.
No structural failure is predicted for all components in the given solar tracker under all of the given loading conditions according to the von Mises failure criterion. An agreement in the trend of variation of misalignment and resultant displacement of PV modules is found. Moreover, the maximum misalignment for each wind direction occurs at the PV modules which touch the wind first. Considering the effects of gravity and wind speeds of 7 m/s and 12 m/s, the maximum misalignment of solar radiation is of 1.48o for a wind speed of 12 m/s with wind direction of 0o. It is expected that such a misalignment value will not cause a significant degradation of power generation for the given PV system. Consequently, the given PV system can operate safely under the effects of gravity and wind speeds of 7 m/s and 12 m/s with a good efficiency. The range of natural frequencies of the first six vibration modes for the given PV system is from 3.85 Hz to 11.4 Hz.
1. R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 2nd Ed., CRC Press, Boca Raton, Florida, USA, 2003.
2. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd., West Sussex, England, 2003.
3. D. Y. Goswami, F. Kreith, and J. F. Kreider, Principles of Solar Engineering, 2nd Ed., Taylor & Francis, Philadelphia, PA, USA, 1999.
4. N. Tanaka, “Technology Roadmap: Solar Photovoltaic Energy,” http://www.iea.org/papers/2010/pv_roadmap.pdf, International Energy Agency, accessed on March 15, 2012.
5. E. Wesoff, “CPV Pt. 1: Stuck in the Middle,” http://www.greentechmedia.com/green-light/post/cpv-pt-1-stuck-in-the-middle-510/, Prometheus Institute & Greentech Media, accessed on March 13, 2012.
6. F. R. Rubio, M. G. Ortega, F. Gordillo, and M. López-Martínez, “Application of New Control Strategy for Sun Tracking,” Energy Conversion and Management, Vol. 48, pp. 2174-2184, 2007.
7. P. Roth, A. Georgiev, and H. Boudinov, “Design and Construction of a System for Sun Tracking,” Renewable Energy, Vol. 29, pp. 393-402, 2004.
8. P. Roth, A. Georgiev, and H. Boudinov, “Cheap Two Axis Sun Following Device,” Energy Conversion and Management, Vol. 46, pp. 1179-1192, 2005.
9. N. H. Helwa, A. B. G. Bahgat, A. M. R. E. Shafee, and E. T. E. Shenawy, “Maximum Collectable Solar Energy by Different Solar Tracking Systems,” Energy Sources, Vol. 22, pp. 23-34, 2000.
10. S. Abdallah and S. Nijmeh, “Two Axes Sun Tracking System with PLC Control,” Energy Conversion and Management, Vol. 45, pp. 1931-1939, 2004.
11. K. K. Chong and C. W. Wong, “General Formula for On-Axis Sun-Tracking System and its Application in Improving Tracking Accuracy of Solar Collector,” Solar Energy, Vol. 83, pp. 298-305, 2009.
12. I. Lugue-Heredia, P. H. Magalhães, G. Quéméré, R. Cervantes, J. M. Moreno, and O. Laurent, “CPV Tracking System: Performance Issues, Specifications and Design,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, San Lorenzo del Escorial, Spain, March 12-16, 2007.
13. A. L. Luque and V. M. Andreev, Concentrator Photovoltaics, Springer-Verlag, Berlin, Germany, 2007.
14. A. Luque, G. Sala, and I. Lugue-Heredia, “Photovoltaic Concentration at Onset of its Commercial Deployment,” Progress in Photovoltaics: Research and Applications, Vol. 14, pp. 413-428, 2006.
15. G. T. Bitsuamlak, A. K. Dagnew, and J. Erwin, “Evaluation of Wind Loads on Solar Panel Modules Using CFD,” in Proceeding of the 5th International Symposium on Computational Wind Engineering, Chapel Hill, North Carolina, USA, May 23-27, 2010.
16. R. Velicu, G. Moldovean, I. Scaletchi, and B.R. Butuc, “Wind Loads on an Azimuthal Photovoltaic Platform. Experimental Study,” in Proceeding of International Conference on Renewable Energies and Power Quality, Granada, Spain, March 23-25, 2010.
17. A. Mihailidis, K. Panagiotidis, and K. Agouridas, “Analysis of Solar Panel Support Structures,” in Proceeding of the 3rd ANSA & ?????International Conference, Halkidiki, Greece, September 9-11, 2009.
18. B. Gong, Z. Li, Z. Wang, and Y. Wang, “Wind-induced Dynamic Response of Heliostat,” Renewable Energy, Vol. 38, pp. 206-213, 2012.
19. R. Faranda, M. Gualdoni, S. Leva, M. Monaco, and A. Timidei, “Analysis of a PV System with Single-axis Tracking Energy Production and Performances,” in Proceeding of International Conference on Clean Electrical Power, Ischia, Italy, June 14-16, 2011.
20. C. Cancro, G. Graditi, G. Leanza, F. Pascarella, A. Sarno, and D. Mancini, “Field Testing of the PhoCUS Solar Tracker by Means of a Novel Optoelectronic Device,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, San Lorenzo del Escorial, Spain, March 12-16, 2007.
21. N. Naeeni and M. Yaghoubi, “Analysis of Wind Flow Around a Parabolic Collector: (1) Fluid Flow,” Renewable Energy, Vol. 32, pp. 1898-1916, 2007.
22. S. S. Rao, Mechanical Vibrations, 4th Ed., Pearson Prentice Hall, Upper Saddle River, New Jersey, USA, 2004.