跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林彥勳
Yan-Syun Lin
論文名稱: 時間分數階徑向發散流場傳輸模式與單一裂隙示蹤劑試驗分析
Aanalysis of Radially Divergent Tracer Tests in A Single Fracture by Time-fractional Solute Transport Models
指導教授: 陳家洵
Chia-shyun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 徑向發散流場示蹤劑試驗單一裂隙時間分數階微分
外文關鍵詞: divergent flow, tracer test, single fracture, time-fractional solute transport model
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究發展了時間分數階移流延散模式(FADE)之半解析解,模擬單一裂隙(single fracture)於徑向發散流場中,溶質的非費克傳輸(non-Fickian transport),以應用於現地的示蹤劑試驗資料分析。所建立的三個時間分數階模式考慮冪律記憶函數(power law memory function),其分數階階數或稱為時間尺度指數(time scale index)0<μ<1。第一個模式,FADE_ADV_NF,僅考慮移流,且考慮裂隙中因非費克擴散進入母岩層的濃度損失(non-Fickian matrix diffusion),需加上另一個時間分數階微分項,其時間尺度指數0<ω<0.5。兩個時間尺度指數μ和ω較小者,將控制濃度長時間的冪律拖尾,但無其他獨立的方法判定何者較小,將產生參數非惟一性的問題,故此模式對於分析的幫助不大。第二個模式,FADE_ADV,僅考慮移流,但不考慮母岩層的非費克擴散。第三個模式,FADE_DISP,考慮移流和延散效應,但不考慮母岩層的非費克擴散。當靠近注入井時,小時間可忽略延散影響;而隨著徑向距離越遠,延散之影響越大。裂隙介質中移動相和非移動相(mobile/immobile,MIM)的多重質量轉移率機制(multiple rate mass transfer),將使溶質傳輸時產生遲滯的效果。本研究中修正分數階容積係數(fractional capacity coefficient)ψ=F(θim/θm),其中F為「時間尺度有效轉換率係數」(time-scaling effective rate coefficient),因次為[Tμ-1],目的是為了使裂隙中非移動相和移動相之有效孔隙率比值θim/θm為無因次。裂隙岩層示蹤劑試驗資料分析結果顯示,忽略延散影響時可得到較佳的分析結果。在同一裂隙岩層中的兩次試驗具有相同的μ,故可做為異質性程度的特徵參數;分數階容積係數ψ具有尺度效應,與試驗時間呈正比。


    The three time-fractional advection dispersion equation (FADE) models are developed for the single fractured formations. The semianalytical solutions are derived for analyzing field tracer test data alike the non-Fickian transport on the divergent flow fields. In the three models, the fractional-in-time derivative within the time scale index 0<μ<1 originates from the considerations of the multiple rate mass transfer between the mobile and immobile phases(MIM) in the fractured media that can be formulated using the power law memory function. The first model, FADE_ADV_NF, assumes the pure advection in the fractured media while allowing non-Fickian matrix diffusion, which adds to the governing equation another fractional-order term within the time scale index 0<ω<0.5. It has been found that the additional term contributes little to the problem of interest because smaller μ or ω is determined from the power law tail, but there is no independent method to determine which is smaller. The second model, FADE_ADV, assumes pure advection in the fractured media without non-Fickian matrix diffusion. The third model, FADE_DISP, assumes both advection and dispersion in the fracture without non-Fickian matrix diffusion. In the vicinity of the injection well where the groundwater velocity is relative large, dispersion can be neglected at the early time. As the radial distance increases, the groundwater velocity decreases and dispersion effects are not negligible. The multiple rate mass transfer between the MIM tends to delay the advancement of solutes. In the current study, the fractional capacity coefficient ψ has been modified by including a time-scaling effective rate coefficient, F in [Tμ-1] where 0<μ<1 is the time scale index to make the porosity ratio between the MIM within the fractures to be dimensionless. From the analysis of the field tracer test data, while neglecting dispersion, model is much better fit to data. The same time scale index μ for two experiments in the same fracture aquifer denotes that it can be the characteristic of the heterogeneity. Fractional capacity coefficient ψ is proportional to the experiment durations and its scale dependent property presents here.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 符號說明 xi 第一章 背景與目的 1 1-1 前言 1 1-2 裂隙含水層傳輸模式 3 1-3 冪律拖尾現象 5 1-4 分數階偏微傳輸模式 6 1-5 研究動機與目的 7 第二章 徑向發散流場時間分數階傳輸模式 8 2-1 概念模式與基本假設 8 2-2 時間分數階控制方程式與邊界條件 10 2-3 模式求解 15 2-4 FADE_ADV_NF和FADE_ADV模式討論 18 2-5 FADE_DISP模式討論 19 2-6 FADE_DISP模式之近似解 20 第三章 模式分析與比較 23 3-1 FADE_ADV_NF模式參數敏感度分析 23 3-2 FADE_ADV模式參數敏感度分析 27 3-3 FADE_DISP模式參數敏感度分析 32 3-5 FADE_ADV與FADE_DISP模式比較 39 第四章 案例分析與討論 42 第五章 結論與建議 52 參考文獻 55

    [1] Bedient, P. B., H. S. Rifai, and G. J. Newell, Ground Water Contamination, 2nd ed., Prentice Hall, Upper Saddle River, NJ07458, 1999.
    [2] Pickens, J. F., and G. E. Grisak, “Scale-dependent dispersion in a stratified granular aquifer ”, Water Resour. Res., 17(4), 1191-1211, 1981a.
    [3] Gelhar, L. W., C. Welty, and K. R. Rehfeldt, “A critical review of data on field-scale dispersion in aquifers ”, Water Resour. Res., 28, 1955-1974, 1992.
    [4] Chen, J.S., Chen, C.S., Chen, C.Y., “Analysis of solute transport in a radially divergent flow tracer test with scale-dependent dispersion ”, Hydrol. Process., 21 (18), pp. 2526–2536, 2007.
    [5] Grisak, G. E., and J. F. Pickens, “An analytical solution for solute transport through fractured media with matrix diffusion ”, J. Hydrol., 52, 47-57, 1981.
    [6] Chen, C. S., “Analytical and approximate solutions to radial dispersion from an injection well to a geological unit with simultaneous diffusion into adjacent strata ”, Water Resour. Res., 21(8), 1069-1076, 1985.
    [7] Chen, C. S., “Solutions for radionuclide transport from an injection well into a single fracture in a porous formation ”, Water Resour. Res., 22(4), 508-518, 1986.
    [8] Novakowski, K. S., “The analysis of tracer experiments conducted in divergent radial flow fields ”, Water Resour. Res., 28(12), 3215-3225, 1992.
    [9] Tang, D. H., E. O. Frind, and E. A. Sudicky, “Contaminant transport in fractured porous media: analytical solution for a single fracture ”, Water Resour. Res., 17(3), 555-564, 1981.
    [10] Tsang, Y. W., and C. F. Tsang, “Channel model of flow through fractured media ”, Water Resour. Res., 23(3), 467-479, 1987.
    [11] Fomin, S., V. Chugunov, and T. Hashida, “The effect of non-Fickian diffusion into surrounding rocks on contaminant transport in a fractured porous aquifer ”, Proc. R. Soc. A, 461, 2923-2939, doi:10.1098/rspa.2005.1487, 2005.
    [12] Berkowitz, B., S. Emmanuel, and H. Scher, “Non-Fickian transport and multiple-rate mass transfer in porous media ”, Water Resour. Res., 44, W03402, doi:10.1029/2007WR005906, 2008.
    [13] Kosakowski, G., and P. Smith, “Modelling the transport of solutes and colloids in the Grimsel migration shear zone ”, PSI Rep. 05-03, Paul Scherrer Inst., Villigen, Switzerland, 2005.
    [14] Starr, R. C., R. W. Gillham, and E. A. Sudicky, “Experimental investigation of solute transport in stratified porous media 2. The reactive case ”, Water Resour. Res., 21(7), 1043-1050, 1985.
    [15] Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation ”, Water Resour. Res., 36(6), 1403-1412, 2000.
    [16] Schumer, R., D. A. Benson, M. M. Meerschaert, and B. Baeumer, “Fractal mobile/immobile solute transport ”, Water Resour. Res., 39(10), 1296, doi:10.1029/2003WR002141, 2003.
    [17] Benson, D. A., C. Tadjeran, M. M. Meerschaert, I. Farnham, and G. Pohll, “Radial fraction-order dispersion through fractured rock ”, Water Resour. Res., 40, W12416, doi:10.1029/2004WR003314, 2004.
    [18] Haggerty R., and S. M. Gorelick, “Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity ”, Water Resour. Res., 31(10), 2383-2400, 1995.
    [19] Haggerty, R., S. A. Mckenna, and L. C. Meigs, “On the late-time behavior of tracer test breakthrough curves ”, Water Resour. Res., 36(12), 3467-3479, 2000.
    [20] Coats, K. H., and B. D. Smith, “Dead-end pore volume and dispersion in porous media ”, Soc. Pet. Eng. J., 4, 73-84, 1964.
    [21] Van Genuchten, M. T., and P. J. Wierena, “Mass transfer studies in sorbing porous media, 1, Analytical solutions ”, Soil Sci. Soc. Am. J., 40, 473-480, 1976.
    [22] Reynolds, W. D., R. W. Gillham, and J. A. Cherry, “Evaluation of distribution coefficients in the prediction of strontium and cesium migration in uniform sand ”, Can. Geotech. J., 19, 92-103, 1982.
    [23] Van Genuchten, D. H. Tang, and R. Guennelon, “Some exact solutions for solute transport through soils containing large cylindrical macropores ”, Water Resour. Res., 20(3), 335-346, 1984.
    [24] Goltz, M. N., and M. E. Oxley, “Analytical modeling of aquifer decontamination by pumping when transport is affected by rate-limited sorption ”, Water Resour. Res., 27(4), 547-556, 1991.
    [25] Becker, M. W., and A. M. Shapiro, “Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing ”, Water Resour. Res., 36(7), 1677-1686, 2000.
    [26] Haggerty, R., and S.W. Fleming, L.C. Meigs and S. A. Mckenna, “Tracer tests in a fractured dolomite: 2. Analysis of mass transfer in single-well injection-withdrawal tests ”, Water Resour. Res., 37(5), 1129-1142, 2001.
    [27] Meigs, L. C. and R. L. Beauheim, “Tracer tests in a fractured dolomite: 1. Experimental design and observed tracer recoveries ”, Water Resour. Res., 37(5), 1113-1128, 2001.
    [28] Mckenna, S. A., L.C. Meigs, and R. Haggerty, “Tracer tests in a fractured dolomite: 3. Double-porosity, multiple-rate mass transfer processes in convergent flow tracer tests ”, Water Resour. Res., 37(5), 1143-1154, 2001.
    [29] Farrell, J., and M. Reinhard, “Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions, 2. Kinetics ”, Environ. Sci. Technol., 28(1), 63-72, 1994.
    [30] Werth, C. J., J. A. Cunningham, P. V. Roberts, and M. Reihard, “Effects of grain-scale mass transfer on the transport of volatile organics through sediments: 2. Column results ”, Water Resour. Res., 33(7), 2727-2740, 1997.
    [31] Callahan, T. J., P. W. Reimus, R. S. Bowman, and M. J. Haga, “Using multiple experimental methods to determine fracture/matrix interactions and dispersion of nonreactive solutes in saturated volcanic tuff ”, Water Resour. Res., 36(12), 3547-3558, 2000.
    [32] Haggerty, R., S. M. Wondzell, and M. A. Johnson, “Power-law residence time distribution in the hyporheic zone of a 2-nd order mountain stream ”, Geophys. Res. Lett., 29(13), 1640, doi:10.1029/2002GL014743, 2002.
    [33] Zhang, Y., D. A. Benson, and M. Reeves, “Time and space nonlocalities underlying fractional-derivative models: Distribution and literature review of field applications ”, Adv. Water Resour., 32, 561-581, doi:10.1016/j.advwatres.2009.01.008, 2009.
    [34] Podlubny, I., Fractional Differential Equations, Academic Press, New York, London, 1999.
    [35] Sauty, J. P., “An analysis of hydrodispersive transfer in aquifers ”, Water Resour. Res., 16(1), 145-158, 1980.
    [36] Mainardi, F., Fractional calculus: Some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi, pp. 292–248, Springer-Verlag, New York, 1997.
    [37] De Hoog, F.R., J. H. Knight, and A. N. Stokes, “An improved method for numerical inversion of Laplace transforms ”, SIAM J. Sci. Stat. Comput., 3 (3), pp. 357–366, 1982.
    [38] Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
    [39] Amos, D. E., “Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order ”, ACM Trans. Math. Soft., 12, 265-273, 1986.
    [40] Gil, A., J. Segura, and N. M. Temme, “Aiz, Biz: Two fortran 77 routines for computation of complex Airy functions ”, ACM Trans. Math. Soft., 28(3), 325-336, 2002.
    [41] Baeumer, B., D. A. Benson, and M. M. Meerschaert, “Advection and dispersion in time and space ”. Physica A, 350(2–4), 245–62, 2005.

    QR CODE
    :::