| 研究生: |
吳玉龍 Yu-Lung Wu |
|---|---|
| 論文名稱: |
空時碼系統之研究 A Study of Space-Time Coding Systems |
| 指導教授: |
林銀議
Yin-Yi Lin 魏瑞益 Reuy-Yi Wei |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 多輸入/多輸出 、籬柵編碼單式調變 、單式空時調變 、分集 、非同調 、衰減通道 |
| 外文關鍵詞: | trellis coded unitary space-time modulation, diversity, unitary space-time modulation, noncoherent, MIMO, fading channel |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前通信系統之設計大部分都集中在低傳輸速率系統之開發,然而,下一代通信系統於網際網路及多媒體上之運用,對於高傳輸率及高機動性的要求以非常快之速度成長,為解決包含時間及頻率選擇性衰減通道(selective fading channel)、功率及頻寬限制所引起效能限制,空時碼(space-time coding)是目前最有效克服衰減之技術及提供高可靠之傳輸。
本論文以三個章節分別探討有關多天線系統之議題,包含非同調(noncoherent)空時碼用於準穩態衰減通道(quasistatic fading channel)之架構、籬柵編碼非同調空時調變(TC-NSTM)及串接空時碼用於不同衰減通道之架構。本論文第三章主要說明在傳送天線及接收天線都不需正確知道通道狀態資訊(CSI)之非同調系統,我們主要提出一種單式空時調變(USTM)以降低二維星座圖訊號點數及保證所尋找出的編碼均為全分集(full diversity),並運用多階層解碼方法以降低解碼複雜度。
第四章提出三種運用於籬柵編碼非同調空時調變之方法,第一種方法為用於區塊衰減通道(block fading channel)環境下之新籬柵編碼單式空時調變(TC-USTM),此方法使用更多的未編碼單式空時調變信號來挑戰傳統利用二倍未編碼單式空時調變信號之籬柵編碼單式空時調變。第二種方法是利用以訓練碼為基礎(training-based)之籬柵編碼非同調空時調變,運用訓練碼估測通道狀態資訊,並將同一分支訊號利用交錯器(interleaver)將信號打散於不同衰減區塊上,以增加系統分集數。第三種方式是用於準穩態衰減通道之非同調序列偵測演算法,而這些演算法是利用一個滑動視窗(slide window)之維特比演算法(Viterbi algorithm)來完成,這個滑動視窗涵蓋幾個籬柵分支信號。
第五章為提出串接空時區塊碼(STBC)與使用一個延遲處理器(delay processor)之籬柵編碼調變(TCM)架構,且運用於多輸入/多輸出(MIMO)系統及多輸入/多輸出正交分頻多工(OFDM)系統。此架構不僅可獲得較大最小平方歐氏距離(squared Euclidean distance)且可獲得較大最小漢明距離(Hamming distance),因此,可得到較佳系統性能。本章除提出一種改善式方法,此方法是於空時區塊碼與籬柵編碼調變中間插入一個特殊區塊交錯器(interleaver),並且提出兩種解碼方法,包含部分硬式決定回授之滑動視窗式之遞迴解碼(SW-IDPHF)及軟式決定回授之滑動視窗式之遞迴解碼(SW-IDSF)。不管是利用那種解碼方式,我們所提出的解碼方法其解碼收斂速度較快且終極性能均比利用傳統解碼方式之位元交錯編碼調變(BICM)為佳。
The main goal of the next generation wireless communication systems provides high data rates and high mobile service for the Internet and multimedia applications. In order to deal with performance-limiting challenges that include time and frequency selective fading channels, power and bandwidth constraints, space-time coding has been proposed as one of the most effective techniques to combat fading and to provide high reliable transmission.
This thesis has three chapters to address three important issues, respectively, relative to multiple antennas systems: noncoherent space-time modulation schemes for the quasistatic fading channel, trellis coded noncoherent space-time modulation schemes for various fading channels and concatenated space-time coding with a delay processor for frequency flat/selective fading channels. In Chapter 3, we deal with a noncoherent system in which the transmit and the receive antennas do not know the channel state information (CSI). We consider the design of unitary spacetime modulation (USTM) reduces the number of signal points in the two-dimensional
constellation and guarantees full diversity for searched codes as well as reduces the decoding complexity with multistage decoding for large constellation size. Moreover, in the scheme using multistage decoding with power allocation based on USTM, training code and differential space-time block coding (DSTBC) can achieve better error performance than those codes using conventional decoding.
In Chapter 4, we propose three schemes for trellis coded noncoherent space-time modulation (TC-NSTM). In the first scheme, based on systematic method for constructing USTM, we propose a new trellis coded unitary space-time modulation (TC-USTM) scheme for the block fading channel; the scheme uses more signals of USTM
compared with the existing TC-USTM schemes expanding the signal set of uncoded USTM by a factor of two and can obtain larger distance than existing schemes. In the second scheme, based on training code, a new TC-NSTM scheme is investigated for the block fading channel also. We use training code instead of USTM and insert
a proper interleaving to increase temporal diversity. In the last scheme, we generalize
the noncohernt sequence detection algorithms to detect TC-USTM over the quasistatic fading channel. The detection using the Viterbi algorithm with a slide window where each window covers several branches of the trellis is proposed. The searched codes for this scheme can achieve better performance than the USTM.
In Chapter 5, we propose concatenated space-time block coding (STBC) with trellis coded modulation (TCM) using a delay processor for multiple-input multipleoutput (MIMO) andMIMO-OFDM (orthogonal frequency-division multiplexing) scheme. The scheme can achieve not only minimum squared Euclidean distances but also
large minimum Hamming distances and hence can achieve good error performance for both MIMO and MIMO-OFDM systems under various fading channels. The slidingwindow-type iterative decoding using partial hard-decision feedback (SW-IDPHF) and sliding-windows-type iterative decoding using soft-decision feedback (SW-IDSF) are also proposed. The codes can converge fast and get better performance as compared to the case of bit-interleaved coded modulation (BICM) using conventional decoding.
[1] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit diversity,”IEEE J. Select. Areas Commun., vol. 18, pp. 1169–1174, July 2000.
[2] P. Dayal, M. Brehler, and M. K. Varanasi, “Leveraging coherent space-time
codes for noncoherent communication via training,” IEEE Trans. Inform. Theory,
vol. 50, pp. 2058–2080, Sept. 2004.
[3] I. Bahceci and T. M. Duman, “Trellis coded unitary space-time modulation,”IEEE Trans. Wireless Commun., vol. 3, pp. 2005–2012, Nov. 2004.
[4] B. Hochwald and W. Swelden, “Differential unitary space-time modulation,”
IEEE Trans. Commun., vol. 48, pp. 2041–2052, Dec. 2000.
[5] B. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 2567–2578, Nov. 2000.
[6] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 48, pp. 744–765, Mar. 1998.
[7] G. Hellstern, “Coded modulation with feedback decoding trellis codes,” in Proc. IEEE Int. Conf. on Communications (ICC), May 1993, pp. 1071–1075.
[8] J. Wang and M. Lin, “On constructing trellis codes with large free distances and low decoding complexities,” IEEE Trans. Commun., vol. 45, pp. 1017–1020, Sept. 1997.
[9] X.Li and J. Ritcey, “Bit-interleaved coded modulation with iterative decoding,” IEEE Commun. Lett., vol. 1, pp. 169–171, Nov. 1997.
[10] Z. Hong and B. Hughes, “Bit-interleaved space-time coded modulation with iterative decoding,” IEEE Trans. Wireless Commun., vol. 3, pp. 1912–1917, Nov. 2004.
[11] S. L. Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral efficient modulation,” in Proc. IEEE ICC’94, 1994, pp. 1064–1070.
[12] G. Bauch, “Concatenation of space-time block codes and ’turbo’-TCM,” in Proc. IEEE ICC’99, June 1999, pp. 1202–1206.
[13] A. Stefanov and T. Duman, “Turbo coded modulation for systems with transmit and receive antenna diversity over block fading channels: system models, decoding approaches, and practical considerations,” IEEE J. Select. Areas Commun., vol. 19, pp. 958–968, May 2001.
[14] Y. Gong and K. B. Letaief, “Concatenated space-time block coding with trellis coded modulation in fading channels,” IEEE Trans. Commun., vol. 51, pp. 2019– 2029, Dec. 2003.
[15] ——, “An efficient space-frequency coded OFDM system for broadband wireless communications,” IEEE Trans. Wireless Commun., vol. 4, pp. 580–590, Oct. 2002.
[16] Z. Hong and B. Hughes, “Robust space-time codes for broadband ofdm systems,” in Proc. IEEE WCNC’02, Mar. 2002, pp. 105–108.
[17] B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke, “Systematic design of unitary space-time constellations,” IEEE Trans. Inform. Theory, vol. 46, pp. 1962–1973, Sept. 2000.
[18] W. Zhao, G. Leus, and G. B. Giannakis, “Orthogonal design of unitary constellations for uncoded and trellis-coded noncoherent space-time systems,” IEEE Trans. Inform. Theory, vol. 50, pp. 1319–1327, June 2004.
[19] Z. Sun and T. T. Tjhung, “On performance analysis and design criteria for trellis coded unitary space-time modulation,” in Proc. IEEE WCNC, Mar. 2003, pp. 262–267.
[20] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple-element antennas,” Bell Labs Technol. J., vol. 1, pp. 41–59, Aug. 1996.
[21] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,”IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.
[22] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes for orthogonal designs,” IEEE Trans. Inform. Theory, vol. 49, pp. 1456–1467, July
1999.
[23] J. H. Winters, “Transmit diversity WCDMA system,” Nokia Research Center,
Tech. Rep., 1998.
[24] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “VBLAST: An architecture for realizing very high date rates, over the richscattering wireless channel,” in Proc. ISSSE-98, Sept. 1998.
[25] L. J. Cimini and J. C.-I. C. Jr., “Advanced cellular internet service,” IEEE Commun. Mag., vol. 36, pp. 150–159, Oct. 1998.
[26] B. Hochwald and T. Marzetta, “Unitary space-time modulation for multipleantenna communications in Rayleigh flat-fading,” IEEE Trans. Inform. Theory, vol. 46, pp. 543–564, Mar. 2000.
[27] S. Alamouti, V. Tarokh, and P. Poon, “Trellis coded modulation and transmit diversity: Design criteria and performance evaluation,” in Proc. IEEE ICUPC’98, Oct. 1998, pp. 703–707.
[28] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri, “Space-time coded OFDM
for high date-rate wireless communication over wideband channels,” in Proc.
IEEE VTC’98, May 1998, pp. 2232–2236.
[29] K. F. Lee and D. B. Williams, “Space-frequency transmitter diversity technique for OFDM systems,” in Proc. IEEE GLOBECOM’00, Nov. 2000, pp. 1473–1477.
[30] B. Lu and X. Wang, “Space-time code design in OFDM systems,” in Proc. IEEE GLOBECOM’00, Nov. 2000, pp. 1000–1004.
[31] T. S. Rappaport, Wireless Communications: Principles and Practice. NJ:
Prentice-Hall, 2002.
[32] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, pp. 1778–1782, Mar. 1998.
[33] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” European Trans. on Telcom., vol. 10, pp. 1778–1782, Nov./Dec. 1999.
[34] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, pp. 139–157, Jan. 1999.
[35] L. Zheng and D. N. C. Tse, “Communication on the Grassmann manifold: a
geometric approach to the noncoherent multiple-antenna channel,” IEEE Trans.
Inform. Theory, vol. 48, pp. 359–383, Feb. 2002.
[36] J. G. Proakis, Digital Communications. McGraw-Hall, 2000.
[37] B. Vecetic and J. H. Yuan, Space-Time Coding. John Wiley & Sons, 2003.
[38] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. Cambridge University Press, 2003.
[39] Y. Gong and K. B. Letaief, “Performance evaluation and analysis pd space-time coding in unequalized multipath fading links,” IEEE Trans. Commun., vol. 48, pp. 1778–1782, Nov. 2000.
[40] S. H. Jamali and T. Le-Ngoc, Coded Modulation Techniques for Fading Channels. Boston: MA: Kluwer, 1994.
[41] S. Siwamogsatam and M. Fitz, “Improved high rate space-time trellis codes via orthogonality and set partitioning,” in Proc. IEEE WCNC’02, Mar. 2002, pp. 17–21.
[42] ——, “Improved high rate space-time TCM via concatenation of expanded orthogonal block codes and MTCM,” in Proc. IEEE ICC’02, New York, Apr. 2002.
[43] H. Jafarkhani and N. Seshadri, “Super-orthogonal space-time trellis codes,”IEEE Trans. Inform. Theory, vol. 49, pp. 937–950, Apr. 2003.
[44] X. B. Liang and X. G. Xia, “Unitary signal constellations for differential space-time modulation with two transmit antennas: parametric codes, optimal designs, and bounds,” IEEE Trans. Inform. Theory, vol. 48, pp. 2291–2322, Aug. 2002.
[45] B. Hassibi and B. M. Hochwald, “How much training is needed in multipleantenna wireless links?” IEEE Trans. Inform. Theory, vol. 49, pp. 951–963, Apr. 2003.
[46] J. K. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 40, pp. 686–693, Nov. 1991.
[47] G. Ungerboeck, “Channel coding with multilevel/phase signal,” IEEE Trans. Inform. Theory, vol. 28, pp. 55–66, Jan. 1982.
[48] D. Raphaeli, “Noncoherent coded modulation,” IEEE Trans. Commun., vol. 44, pp. 172–183, Feb. 1996.
[49] G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Trans. Commun., vol. 47, pp. 1376–1385, Sept. 1999.
[50] R. Y. Wei and Y. L. Wu, “On trellis coded noncoherent space-time modulation,” IEEE Trans. Wireless Commun., to be published.
[51] H. E. Gamal and A. R. H. Jr., “On the design of algebraic space-time codes for mimo block-fading channels,” IEEE Trans. Inform. Theory, vol. 49, pp. 151–163, Jan. 2003.
[52] W. Jakes, Microwave Mobile Communications. NJ: IEEE Press, 1994.
[53] G. D. Forney, Concatenated codes. Cambridge, MA: MIT Press, 1966.
[54] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55–66, Jan. 1982.
[55] E. Zehavi, “8-PSK trellis codes for a rayleigh channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 873–884, May 1992.
[56] X.Li and J. Ritcey, “Bit-interleaved coded modulation with iterative decoding,” in Proc. IEEE ICC’99, June 1999, pp. 858–862.
[57] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inform. Theory, vol. 44, pp. 927–946, May 1998.
[58] P. Robertson and T. W¨orz, “Bandwidth-efficient turbo trellis coded modulation using punctured component codes,” IEEE J. Select. Areas Commun., vol. 16, pp. 206–218, Feb. 1998.
[59] J. L. Ramsey, “Realization of optimum interleavers,” IEEE Trans. Inform. Theory, vol. 16, pp. 338–345, May 1970.
[60] Y. L. Ueng, C. J. Yeh, and M. C. Lin, “On trellis codes with delay processor and signal mapper,” IEEE Trans. Commun., vol. 50, pp. 1906–1917, Jan. 2002.
[61] T. C. Ying, “Space-time coding with a delay processor in orthogonal frequency division multiplexing system,” Master’s thesis, National Central University, Chung-Li, Taiwan, 2004.
[62] C. W. Yang, “Soft-input/soft-output iterative decoding for space-time coding with a delay processor,” Master’s thesis, National Central University, Chung-Li, Taiwan, 2005.
[63] E. Akay and E. Ayanoglu, “Bit interleaved coded modulation with space time block codes for ofdm systems,” in Proc. IEEE VTC2004-Fall, Sept. 2004, pp. 2477–2481.
[64] S. Lin and D. J. C. Jr., Error Control Coding: Fundamentals and Applications. Prentice Hall, 2004.
[65] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-output decoding algorithms for continuous decoding of parallel concatenated convolutional codes,” in Proc. IEEE ICC’96, Dallas, Texas, June 1996, pp. 23–27.
[66] H. H. Ma and J. K. Wolf, “On tail-biting convolutional codes,” IEEE Trans. Commun., vol. 34, pp. 104–111, Feb. 1986.
[67] Y. Huang and J. A. Ritcey, “Tight ber bounds for iteratively decoded bitinterleaved space-time coded modulation,” IEEE Commun. Lett., vol. 8, pp.
153–155, Mar. 2004.
[68] J. B. Anderson and S. M. Hladik, “Tail-biting map decoders,” IEEE J. Select. Areas Commun., vol. 16, pp. 297–302, Feb. 1998.
[69] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo coding, turbo equalization and
space-time coding for transmission over fading channels. John Wiley, 2002.
[70] Z. Sun and T. T. Tjhung, “On performance analysis and design criteria for trellis coded differential unitary space-time modulation,” in Proc. IEEE Int. Conf. on Communications (ICC’03), May 2003, pp. 3477–3481.
[71] M. Tao and R. S. Cheng, “Trellis-coded differential unitary space-time modulation over flat fading channels,” IEEE Trans. Commun., vol. 51, pp. 587–596, Apr. 2003.
[72] Z. Sun and T. T. Tjhung, “Multiple-trellis-coded unitary space-time modulation in Rayleigh flat fading,” IEEE Trans. Wireless Commun., vol. 3, pp. 2335–2344, Nov. 2004.
[73] M. Borgmann and H. B¨olcskei, “Noncoherent space-frequency coded MIMOOFDM,”IEEE J. Select. Areas Commun., vol. 23, pp. 1–12, Sept. 2005.
[74] J. Giese and M. Skoglund, “Space-time constellations for unknown frequencyselective channels,” in Proc. IEEE ICC’03, June 2003, pp. 2583–2587.