跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳姍蓓
Shan-Pei Wu
論文名稱: 結合時間及頻率之穩態視覺誘發電位閃光編碼設計
A Novel Stimulation Method Combined of Time and Frequency Coded for SSVEP-Based BCI
指導教授: 徐國鎧
Kuo-Kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 92
中文關鍵詞: 大腦人機介面穩態視覺誘發電位
外文關鍵詞: Steady-State Visual Evoked Potential (SSVEP), Brain-Computer Interface (BCI)
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以穩態視覺誘發電位(Steady-State Visual Evoked Potential, SSVEP)為基礎,提出了新的編碼設計方式。一般穩態視覺誘發電位之閃光刺激訊號是以頻率編碼為主,使用者須注視以固定頻率持續閃爍之閃光源來誘發出相對應之穩態視覺誘發電位反應;而本論文所提出之編碼方式同時結合了穩態視覺誘發電位之頻率鎖定及時間鎖定特性,其具有特殊的刺激序列結構,將使得閃光源呈現閃爍與熄滅交錯之狀態,如此即可改善一般穩態視覺誘發電位刺激方式容易造成使用者視覺疲勞與不適感之缺點。以此閃光編碼方式所誘發出之穩態視覺誘發電位能量將呈現與刺激序列週期相對應之週期性變化,因此腦電訊號只要經過適當的數位訊號處理即可計算出穩態視覺誘發電位能量變化之週期,並藉此達到辨識閃光選項之目的。最後,本論文已經藉由實驗證實此編碼方式所誘發之穩態視覺誘發電位確實具有上述特性,且可做為大腦人機介面之閃光選項使用。


    This study proposes a novel stimulation method for steady state visual evoked potential-based brain computer interfaces (SSVEP-based BCIs). The general SSVEP response is induced by a flicker flashing at a fixed frequency. However, visual fatigue evoked by durative stimuli will reduce the amplitude of SSVEP response and make the user uncomfortable. The new coding approach combined of the frequency-locked and time-locked features of SSVEP can eliminate these disadvantages. The flickers will flash for 1 second and turn off respectively for 0.5, 1 and 1.5 seconds by turns. The cycles of the stimulus sequences may cause the corresponding reaction, and the SSVEP energy may appear as periodic variations. This feature will be used in the classification. Finally, the experiment results demonstrate that the SSVEP induced by the proposed method do have the periodic property and can be used in the BCI system.

    摘要 I ABSTRACT II 誌謝 III 第一章 緒論 1 1.1研究動機 1 1.2研究目的與方法 2 1.3論文大綱 2 第二章 以穩態視覺誘發電位為基礎之大腦人機介面系統 3 2.1大腦人機介面 3 2.2視覺誘發電位 4 2.3以穩態視覺誘發電位為基礎之大腦人機介面系統 8 2.4結合時間及頻率之閃光編碼設計 10 第三章 類比量測電路 15 3.1量測系統電路架構 15 3.2射頻干擾濾波器與突波抑制電路 17 3.3前級放大器 21 3.4六階帶通濾波器 25 3.5陷波濾波器 30 3.6主放大器與箝位電路 32 3.7隔離放大器 33 第四章 數位訊號處理 36 4.1數位訊號處理系統架構 36 4.2數位濾波器 37 4.3移動平均及分段能量計算 38 4.4尋找區域最大點及最小點 41 4.5權重計算及處理 42 4.5.1峰值檢測 43 4.5.2振幅檢測 46 4.5.3時間差與峰值再檢測之權重計算 54 4.6選項判斷方式 57 第五章 實驗結果 58 5.1實驗設計說明 58 5.2實驗波形 59 5.3實驗結果與討論 62 第六章 結論與未來展望 71 參考文獻 73

    [1] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “BCI2000: A General-Purpose Brain-Computer Interface (BCI) System”, IEEE Transactions on Biomedical Engineering, Vol. 51, pp. 1034-1043, No. 6, Jun. 2004.
    [2] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain–Computer Interfaces for 1-D and 2-D Cursor: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials”, IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 14, No. 2, pp. 225-229, Jun. 2006.
    [3] M. Cheng, X. R. Gao, S. K. Gao, and D. F. Xu, “Design and Implementation of a Brain-Computer Interface with High Transfer Rates”, IEEE Transactions on Biomedical Engineering, Vol. 49, No. 10, pp. 1181-1186, Oct. 2002.
    [4] R. C. Panicker, S. Puthusserypady, and Y. Sun, “An Asynchronous P300 BCI with SSVEP-Based Control State Detection”, IEEE Transactions on Biomedical Engineering, Vol. 58, No. 6, pp. 1781-1788, Jun. 2011.
    [5] P. L. Lee, J. J. Sie, Y. J. Liu, C. H. Wu, M. H. Lee, C. H. Shu, P. H. Li, C. W. Sun, and K. K. Shyu, “An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System”, Annals of Biomedical Engineering, Vol. 38, No. 7, pp. 2383-2397, Jul. 2010.
    [6] H. Cecotti and A. Graser, “Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 3, Mar. 2011.
    [7] J. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan, “Brain-Computer Interfaces for Communication and Control”, Clinical Neurophysiology, Vol. 113, pp. 767-791, 2002.
    [8] J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, Vaegan, “ISCEV Standard for Clinical Visual Evoked Potentials(2009 update)”, Doc. Ophthalmol., 120, pp. 111-119, 2010.
    [9] E. E. Sutter, “The Brain Response Interface: Communication through Visually-Induced Electrical Brain Response”, Journal of Microcomputer Application, Vol. 15, pp. 31-45, Jan. 1992.
    [10] P. L. Lee, C. H. Wu, J. C. Hsieh, and Y. T. Wu, “Visual Evoked Potential Actuated Brain Computer Interface: A Brain-Actuated Cursor System”, Electronics Letters, Vol. 4, No. 15, Jul. 2005.
    [11] 謝竣傑,「多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面」,國立中央大學電機工程學系,碩士論文,民國九十六年七月。
    [12] M. Middendorf, G. McMillan, G. Calhoun, and K.S. Jones, “Brain-Computer Interfaces Based on the Steady-State Visual Evoked Response”, IEEE Transactions on Rehabilitation Engineering, Vol. 8, No. 2, pp. 211-214, Jun. 2000.
    [13] C. Jia, X. R. Gao, B. Hong, S. K. Gao, ”Frequency and Phase Mixed Coding in SSVEP-Based Brain-Computer Interface”, IEEE Transactions on Biomedical Engineering, Vol. 58, No. 1, pp. 200-206, Jan. 2011.
    [14] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly, and G. McDarby, “Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment”, EURASIP Journal on Applied Signal Processing, 19, pp. 3156-3164, 2005.
    [15] Y. Wang, R. Wang, X. R. Gao, B. Hong and S. K. Gao, “A Practical VEP-Based Brain-Computer Interface”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, No. 2, pp. 234-239, Jun. 2006.
    [16] 梁家銘,「穩態視覺誘發電位於大腦人機介面之刺激頻率及責任週期設計」,國立中央大學電機工程學系,碩士論文,民國一百年六月。
    [17] J. Pan, X. R. Gao, F. Duan, Z. Yan, and S. K. Gao, “Enhancing the Classification Accuracy of Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces Using Phase Constrained Canonical Correlation Analysis”, Neural Engineering, Vol. 8, No. 3, May 2011.
    [18] 黃進強,「交流耦合平衡增益之腦波量測系統」,國立中央大學電機工程學系,碩士論文,民國九十六年七月。
    [19] Analog Devices Inc., “RFI Rectification Concepts”, Tutorial MT-096, Rev. 0, 2009.
    [20] C. Kitchin, L. Counts, and M. Gerstenhaber, “Reducing RFI Rectification Errors in In-Amp Circuits”, Application Note AN-671, Analog Devices Inc., Rev. 0, 2003.
    [21] Jr. J. W. Clark, M. R. Neuman, W. H. Olson, R. A. Peura, Jr. F. P. Primiano, M. P. Siedband, J. G. Webster (Editor), L. A. Wheeler, Medical Instrumentation Application and Design, 4th Edition, John Wiley & Sons Inc., 2009.
    [22] Burr-Brown Corporation, INA128 Datasheet, Oct. 1996.
    [23] B. B. Winter and J. G. Webster, “Driven-Right-Leg Circuit Design”, IEEE Transactions on Biomedical Engineering, Vol. BME-30, No. 1, pp.62-66, Jan. 1983.
    [24] 盧明智,黃敏祥,「OP AMP應用+實驗模擬」,全華科技圖書股份有限公司,民國八十四年十二月。
    [25] Texas Instruments Inc., ISO124 Datasheet, Sep. 2005.
    [26] 蒙以正,「數位訊號處理:應用MATLAB」,旗標出版股份有限公司,民國九十七年五月。
    [27] A. V. Oppenheim, R.W. Schafer, J. R. Buck, Discrete-Time Signal Processing, 2nd edition, Prentice Hall Inc., 1999.
    [28] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach, John Wiley & Sons Inc., 2002.
    [29] L. A. Farwell, E. Donchin, “Talking off the Top of Your Head: A Mental Prosthesis Utilizing Event-Related Brain Potentials”, Electroencephalography and Clinical Neurophysiology, Vol.70, pp. 510-523, Dec. 1988.

    QR CODE
    :::