跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭皓仁
Hao-Ren Jheng
論文名稱: Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV
指導教授: 郭家銘
Chia-Ming Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 212
中文關鍵詞: 大型強子對撞機緊湊渺子線圈Z玻色子希格斯玻色子稀有衰變
外文關鍵詞: Z boson, Higgs boson, rare decays, LHC, CMS
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文目的為尋找Z玻色子和希格斯玻色子衰變至一個J/ψ介子和一個光子的頻道,其中J/ψ介子進一步衰變至渺子對 (μ+μ−)。此分析使用於2016年由大型強子對撞機 (LHC)產生的質子對撞,質心能量為13兆電子伏特 (TeV),並由緊湊緲子線圈 (CMS) 所收集,對應於總光度35.9飛靶 (inverse femto-barn)之事件。若J/ψ介子不帶極性,在95%信心水準下,Z玻色子衰變頻道之衰變分支比例的觀測上限為1.4×10−6,約對應至15倍的標準模型預測值。假設J/ψ介子帶有縱向或橫向極性,衰變分支比例的觀測上限對應於不帶極性之假設有-13.6至+8.6%的差異。在J/ψ介子帶有橫向極性且在95%信心水準下,希格斯玻色子衰變頻道之衰變分支比例的觀測上限為7.6×10−4,約對應至260倍的標準模型預測值。在統計上,此希格斯玻色子衰變頻道之結果與由質心能量8兆電子伏特所得到之結果合併計算,得到衰變分支比例的觀測上限約對應至220倍的標準模型預測值。


    A search is presented for decays of Z and Higgs bosons to a J/ψ meson and a photon, with the subsequent decay of the J/ψ to μ+μ−. The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb−1 at √s = 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z→J/ψ γ
    decay branching fraction, assuming that the J/ψ meson is produced unpolarized, is 1.4×10−6 at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from -13.6 to +8.6% with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H→J/ψ γ where the J/ψ meson is assumed to be transversely polarized is 7.6×10−4, a factor of 260 larger than the standard model prediction. The results for the Higgs boson
    are combined with previous data from proton-proton collisions at √s = 8 TeV to produce an observed upper limit on the branching fraction for H→J/ψ γ that is a factor of 220 larger than the standard model value.

    1 Introduction 1 1.1 Thestandardmodelofparticlephysics.................. 1 1.1.1 Gaugeinvariance.......................... 2 1.1.2 Weak interaction and the electroweak unification . . . . . . . 6 1.1.3 TheHiggsmechanism....................... 13 1.1.4 The production of the Higgs boson and its decays . . . . . . . 21 1.1.5 ThemeasurementoftheHiggscouplings . . . . . . . . . . . . 28 1.2 TheraredecaysZ/H!J/yg....................... 35 1.2.1 Overview .............................. 35 1.2.2 Featuresofthedecays ....................... 37 1.2.3 Previous results from the ATLAS and CMS Collaborations . . 39 2 Experimental apparatus 43 2.1 LargeHadronCollider ........................... 43 2.2 CompactMuonSolenoid.......................... 45 2.3 Objectreconstruction............................ 52 2.3.1 Particle-Flowalgorithm ...................... 52 2.3.2 Pile-up&Primaryvertex ..................... 58 3 Analysis procedures 60 3.1 Dataandsimulatedsamples........................ 60 3.1.1 Datasample............................. 60 3.1.2 Simulatedsamples ......................... 61 3 3.2 Trigger .................................... 69 3.3 Objectidentification............................. 80 3.3.1 Muonidentification ........................ 80 3.3.2 Photonidentification........................ 88 3.4 EventSelection ............................... 89 3.5 Backgroundmodeling ...........................108 3.5.1 F-test.................................109 3.5.2 Biasstudy ..............................111 3.6 Signalmodeling...............................124 3.7 Systematicuncertainties ..........................124 3.8 Statisticalmethod..............................133 4 Results and conclusion 140 4.1 Limitsondecaybranchingfraction....................140 4.2 Conclusion..................................142 4.3 Outlook....................................143 A Additional materials for the bias study 145 A.1 Linearity ...................................145 A.1.1 H!J/yg..............................146 A.1.2 Z!J/ygCat1...........................148 A.1.3 Z!J/ygCat2...........................150 A.1.4 Z!J/ygCat3...........................152 A.2 Pseudo-event ................................154 A.2.1 Pseudo-eventsforH!J/yg...................155 A.2.2 Pseudo-eventsforCat1ofZ!J/yg. . . . . . . . . . . . . . . 156 A.2.3 Pseudo-eventsforCat2ofZ!J/yg . . . . . . . . . . . . . .157 A.2.4 Pseudo-eventsforCat3ofZ!J/yg . . . . . . . . . . . . . .158 B Discussion on the systematic uncertainties 159 C Beam test for the CMS high granularity endcap calorimeter in 2018 165 C.1 BDTmethodforenergyreconstruction. . . . . . . . . . . . . . . . . .167 C.2 Electronandpionseparation .......................177 C.3 Machine learning technique for Electron and pion separation . . . . . 182 Bibliography 191

    [1] Peter Skands. Introduction to QCD. 2013.
    [2] The ALEPH, DELPHI, L3, OPAL Collaborations, the LEP ElectroweakWorking
    Group. Electroweak Measurements in Electron-Positron Collisions atWBoson-
    Pair Energies at LEP. Phys. Rept., 532:119, 2013.
    [3] Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., 19:1264–1266, Nov
    1967.
    [4] G. Arnison et al. Experimental observation of isolated large transverse energy
    electrons with associated missing energy at ps=540 GeV. Phys. Lett. B,
    122(1):103 – 116, 1983.
    [5] G. Arnison et al. Observation of muonic Z0-decay at the pp collider. Phys.
    Lett. B, 147(1):241 – 248, 1984.
    [6] Michał Szleper. The Higgs boson and the physics of WW scattering before
    and after Higgs discovery. 2014.
    [7] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector
    Mesons. Phys. Rev. Lett., 13:321–323, Aug 1964.
    [8] Peter W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys.
    Rev. Lett., 13:508–509, Oct 1964.
    [9] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws
    and Massless Particles. Phys. Rev. Lett., 13:585–587, Nov 1964.
    [10] Murray Gell-Mann, Pierre Ramond, and Richard Slansky. Complex Spinors
    and Unified Theories. Conf. Proc., C790927:315–321, 1979.
    [11] Mohapatra, Rabindra N. and Senjanovi´c, Goran. Neutrino Mass and Spontaneous
    Parity Nonconservation. Phys. Rev. Lett., 44:912–915, Apr 1980.
    [12] LHC Higgs Cross SectionWorking Group. History: r294.
    [13] LHCTopWG Summary Plots. History: r52.
    199
    [14] Georges Aad et al. Measurements of the Higgs boson production and decay
    rates and constraints on its couplings from a combined ATLAS and CMS
    analysis of the LHC pp collision data at ps = 7 and 8 TeV. JHEP, 08:045,
    2016.
    [15] Morad Aaboud et al. Observation of Higgs boson production in association
    with a top quark pair at the LHC with the ATLAS detector. 2018.
    [16] Albert M Sirunyan et al. Observation of ttH production. Phys. Rev. Lett.,
    120(23):231801, 2018.
    [17] Search for the associated production of a Higgs boson and a single top quark
    in pp collisions at ps = 13 TeV. Technical Report CMS-PAS-HIG-18-009,
    CERN, Geneva, 2018.
    [18] Geoffrey T. Bodwin, Frank Petriello, Stoyan Stoynev, and Mayda Velasco.
    Higgs boson decays to quarkonia and the H¯ cc coupling. Phys. Rev. D,
    88:053003, 2013.
    [19] T. Aaltonen, A. Buzatu, B. Kilminster, Y. Nagai, and W. Yao. Improved b-jet
    energy correction for H ! b¯b searches at CDF. 2011.
    [20] Vardan Khachatryan et al. Search for the associated production of a Higgs
    boson with a single top quark in proton-proton collisions at ps = 8 TeV.
    JHEP, 06:177, 2016.
    [21] Georges Aad et al. Search for the b¯b decay of the Standard Model Higgs
    boson in associated (W/Z)H production with the ATLAS detector. JHEP,
    01:069, 2015.
    [22] Albert M Sirunyan et al. Observation of Higgs boson decay to bottom
    quarks. Submitted to: Phys. Rev. Lett., 2018.
    [23] Morad Aaboud et al. Observation of H ! b¯b decays and VH production
    with the ATLAS detector. 2018.
    [24] Georges Aad et al. Test of CP Invariance in vector-boson fusion production
    of the Higgs boson using the Optimal Observable method in the ditau decay
    channel with the ATLAS detector. Eur. Phys. J., C76(12):658, 2016.
    [25] Stefan Berge,Werner Bernreuther, and Sebastian Kirchner. Prospects of constraining
    the Higgs boson’s CP nature in the tau decay channel at the LHC.
    Phys. Rev. D, 92:096012, 2015.
    [26] Cross-section measurements of the Higgs boson decaying to a pair of tau
    leptons in proton–proton collisions atps = 13 TeV with the ATLAS detector.
    Technical Report ATLAS-CONF-2018-021, CERN, Geneva, Jun 2018.
    200
    [27] Albert M Sirunyan et al. Observation of the Higgs boson decay to a pair of
    t leptons with the CMS detector. Phys. Lett. B, 779:283–316, 2018.
    [28] Measurement of gluon fusion and vector boson fusion Higgs boson production
    cross-sections in the H ! WW⇤ ! enμn decay channel in pp collisions
    at ps = 13 TeV with the ATLAS detector. Technical Report ATLAS-CONF-
    2018-004, CERN, Geneva, Mar 2018.
    [29] Albert M Sirunyan et al. Measurements of properties of the Higgs boson
    decaying to a W boson pair in pp collisions at ps = 13 TeV. Submitted to:
    Phys. Lett. B, 2018.
    [30] Serguei Chatrchyan et al. Measurement of the properties of a Higgs boson
    in the four-lepton final state. Phys. Rev. D, 89(9):092007, 2014.
    [31] Serguei Chatrchyan et al. Study of the mass and spin-parity of the Higgs boson
    candidate via its decays to Z Boson pairs. Phys. Rev. Lett., 110(8):081803,
    2013.
    [32] Vardan Khachatryan et al. Constraints on the spin-parity and anomalous
    HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys.
    Rev. D, 92(1):012004, 2015.
    [33] Georges Aad et al. Measurements of Higgs boson production and couplings
    in the four-lepton channel in pp collisions at center-of-mass energies of 7 and
    8 TeV with the ATLAS detector. Phys. Rev. D, 91(1):012006, 2015.
    [34] Georges Aad et al. Study of the spin and parity of the Higgs boson in diboson
    decays with the ATLAS detector. Eur. Phys. J., C75(10):476, 2015. [Erratum:
    Eur. Phys. J.C76,no.3,152(2016)].
    [35] Vardan Khachatryan et al. Constraints on the Higgs boson width from offshell
    production and decay to Z-boson pairs. Phys. Lett. B, B736:64–85, 2014.
    [36] Vardan Khachatryan et al. Limits on the Higgs boson lifetime and width
    from its decay to four charged leptons. Phys. Rev. D, 92(7):072010, 2015.
    [37] Georges Aad et al. Constraints on the off-shell Higgs boson signal strength
    in the high-mass ZZ and WW final states with the ATLAS detector. Eur.
    Phys. J., C75(7):335, 2015.
    [38] Measurements of properties of the Higgs boson in the four-lepton final state
    at ps = 13 TeV. Technical Report CMS-PAS-HIG-18-001, CERN, Geneva,
    2018.
    [39] Measurements of the Higgs boson production, fiducial and differential cross
    sections in the 4` decay channel at ps = 13 TeV with the ATLAS detector.
    Technical Report ATLAS-CONF-2018-018, CERN, Geneva, Jun 2018.
    201
    [40] Albert M Sirunyan et al. Measurements of properties of the Higgs boson
    decaying into the four-lepton final state in pp collisions at ps = 13 TeV.
    JHEP, 11:047, 2017.
    [41] Vardan Khachatryan et al. Observation of the diphoton decay of the Higgs
    boson and measurement of its properties. Eur. Phys. J., C74(10):3076, 2014.
    [42] Georges Aad et al. Measurement of Higgs boson production in the diphoton
    decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with
    the ATLAS detector. Phys. Rev. D, 90(11):112015, 2014.
    [43] Albert M Sirunyan et al. Measurements of Higgs boson properties in the
    diphoton decay channel in proton-proton collisions at ps = 13 TeV. 2018.
    [44] Albert M Sirunyan et al. Measurement of inclusive and differential Higgs
    boson production cross sections in the diphoton decay channel in protonproton
    collisions at ps = 13 TeV. 2018.
    [45] Morad Aaboud et al. Measurements of Higgs boson properties in the diphoton
    decay channel with 36 fb−1 of pp collision data at ps = 13 TeV with the
    ATLAS detector. 2018.
    [46] Albert M Sirunyan et al. Search for the decay of a Higgs boson in the ``g
    channel in proton-proton collisions at ps = 13 TeV. Submitted to: JHEP,
    2018.
    [47] M. Aaboud et al. Searches for the Zg decay mode of the Higgs boson and for
    new high-mass resonances in pp collisions at ps = 13 TeV with the ATLAS
    detector. JHEP, 10:112, 2017.
    [48] D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering
    the Nature of the Higgs Sector. 2016.
    [49] Albert M Sirunyan et al. Search for the Higgs boson decaying to two muons
    in proton-proton collisions at ps = 13 TeV. 2018.
    [50] A search for the rare decay of the Standard Model Higgs boson to dimuons
    in pp collisions at ps = 13 TeV with the ATLAS Detector. Technical Report
    ATLAS-CONF-2018-026, CERN, Geneva, Jul 2018.
    [51] Gilad Perez, Yotam Soreq, Emmanuel Stamou, and Kohsaku Tobioka. Constraining
    the charm Yukawa and Higgs-quark coupling universality. Phys.
    Rev. D, 92(3):033016, 2015.
    [52] Gilad Perez, Yotam Soreq, Emmanuel Stamou, and Kohsaku Tobioka.
    Prospects for measuring the Higgs boson coupling to light quarks. Phys.
    Rev. D, 93(1):013001, 2016.
    202
    [53] M. Aaboud et al. Search for the Decay of the Higgs Boson to Charm Quarks
    with the ATLAS Experiment. Phys. Rev. Lett., 120(21):211802, 2018.
    [54] Georges Aad et al. Combined measurement of the Higgs boson mass in pp
    collisions at ps = 7 and 8 TeV with the ATLAS and CMS experiments. Phys.
    Rev. Lett., 114:191803, 2015.
    [55] Georges Aad et al. Observation of a new particle in the search for the Standard
    Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B,
    716:1–29, 2012.
    [56] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV
    with the CMS experiment at the LHC. Phys. Lett. B, 716:30–61, 2012.
    [57] Serguei Chatrchyan et al. Observation of a new boson with mass near 125
    GeV in pp collisions at ps = 7 and 8 TeV. JHEP, 06:081, 2013.
    [58] Georges Aad et al. Measurements of the Higgs boson production and decay
    rates and coupling strengths using pp collision data at ps = 7 and 8 TeV in
    the ATLAS experiment. Eur. Phys. J., C76(1):6, 2016.
    [59] Vardan Khachatryan et al. Precise determination of the mass of the Higgs
    boson and tests of compatibility of its couplings with the standard model
    predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J., C75(5):212,
    2015.
    [60] Georges Aad et al. Evidence for the spin-0 nature of the Higgs boson using
    ATLAS data. Phys. Lett. B, 726:120–144, 2013.
    [61] Combined measurements of the Higgs boson’s couplings at ps = 13 TeV.
    Technical Report CMS-PAS-HIG-17-031, CERN, Geneva, 2018.
    [62] J R Andersen et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties.
    2013.
    [63] John Ellis and Tevong You. Global analysis of the Higgs candidate with mass
    125 GeV. JHEP, 09:123, 2012.
    [64] John Ellis and Tevong You. Updated Global Analysis of Higgs Couplings.
    JHEP, 06:103, 2013.
    [65] C et al. Patrignani. Review of Particle Physics, 2016-2017. Chin. Phys. C,
    40(10):100001. 1808 p, 2016.
    [66] Fady Bishara, Ulrich Haisch, Pier Francesco Monni, and Emanuele Re. Constraining
    Light-Quark Yukawa Couplings from Higgs Distributions. Phys.
    Rev. Lett., 118(12):121801, 2017.
    203
    [67] Combined measurement and interpretation of differential Higgs boson production
    cross sections at ps=13 TeV. Technical Report CMS-PAS-HIG-17-
    028, CERN, Geneva, 2018.
    [68] Cédric Delaunay, Tobias Golling, Gilad Perez, and Yotam Soreq. Enhanced
    Higgs boson coupling to charm pairs. Phys. Rev. D, 89(3):033014, 2014.
    [69] W. Buchmuller and D. Wyler. Effective Lagrangian analysis of new interactions
    and flavor conservation. Nucl. Phys. B, 268:621, 1986.
    [70] Steven Weinberg. Effective gauge theories. Phys. Lett. B, 91:51, 1980.
    [71] Roberto Contino, Margherita Ghezzi, Christophe Grojean, Margarete Muhlleitner,
    and Michael Spira. Effective Lagrangian for a light Higgs-like scalar.
    JHEP, 07:035, 2013.
    [72] Michael Trott and Mark B. Wise. On theories of enhanced CP violation in
    Bs,d meson mixing. JHEP, 11:157, 2010.
    [73] Martin Jung, Antonio Pich, and Paula Tuzon. Charged-Higgs phenomenology
    in the Aligned two-Higgs-doublet model. JHEP, 11:003, 2010.
    [74] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi. The stronglyinteracting
    light Higgs. JHEP, 06:045, 2007.
    [75] Cédric Delaunay, Thomas Flacke, J. Gonzalez-Fraile, Seung J. Lee, Giuliano
    Panico, and Gilad Perez. Light non-degenerate composite partners at the
    LHC. JHEP, 02:055, 2014.
    [76] B. Guberina and J.H. Kühn and R.D. Peccei and R. Rückl. Rare decays of the
    Z0. Nuclear Physics B, 174:317, 1980.
    [77] Ting-Chung Huang and Frank Petriello. Rare exclusive decays of the Zboson
    revisited. Phys. Rev. D, 92:014007, 2015.
    [78] Yuval Grossman, Matthias König, and Matthias Neubert. Exclusive radiative
    decays of W and Z bosons in QCD factorization. JHEP, 04:101, 2015.
    [79] Geoffrey T. Bodwin, Hee Sok Chung, June-Haak Ee, and Jungil Lee. Addendum:
    New approach to the resummation of logarithms in Higgs-boson decays
    to a vector quarkonium plus a photon [Phys. Rev. D 95, 054018 (2017)].
    Phys. Rev. D, 96:116014, 2017.
    [80] Geoffrey T. Bodwin, Hee Sok Chung, June-Haak Ee, and Jungil Lee. Z-boson
    decays to a vector quarkonium plus a photon. Phys. Rev. D, 97(1):016009,
    2018.
    [81] Geoffrey T. Bodwin, Eric Braaten, and G. Peter Lepage. Rigorous QCD analysis
    of inclusive annihilation and production of heavy quarkonium. Phys.
    Rev. D, 51:1125–1171, Feb 1995.
    204
    [82] G. Peter Lepage and Stanley J. Brodsky. Exclusive processes in perturbative
    quantum chromodynamics. Phys. Rev. D, 22:2157–2198, Nov 1980.
    [83] Chernyak, V. L. and Zhitnitsky, A. R. Asymptotic Behavior of Exclusive Processes
    in QCD. Phys. Rept., 112:173, 1984.
    [84] C. N. Yang. Selection Rules for the Dematerialization of a Particle into Two
    Photons. Phys. Rev., 77:242–245, Jan 1950.
    [85] Ye Li and Frank Petriello. Combining QCD and electroweak corrections to
    dilepton production in FEWZ. Phys. Rev. D, 86:094034, 2012.
    [86] Georges Aad et al. Search for Higgs and Z Boson decays to J/yg and U(nS)g
    with the ATLAS detector. Phys. Rev. Lett., 114:121801, 2015.
    [87] Vardan Khachatryan et al. Search for a Higgs boson decaying into g⇤g ! ``g with low dilepton mass in pp collisions at ps = 8 TeV. Phys. Lett. B,
    753:341, 2016.
    [88] Morad Aaboud et al. Searches for exclusive Higgs and Z boson decays into
    J/yg, y(2S)g, and U(nS)g at ps = 13 TeV with the ATLAS detector. 2018.
    [89] Esma Mobs. The CERN accelerator complex. Complexe des accélérateurs du
    CERN. Jul 2016. General Photo.
    [90] CMS Luminosity - Public Results. History: r140.
    [91] Tai Sakuma and Thomas McCauley. Detector and event visualization with
    SketchUp at the CMS experiment. Technical Report CMS-CR-2013-379.
    arXiv:1311.4942, CERN, Geneva, Oct 2013. Comments: 5 pages, 6 figures,
    Proceedings for CHEP 2013, 20th International Conference on Computing in
    High Energy and Nuclear Physics.
    [92] Serguei Chatrchyan et al. Description and performance of track and
    primary-vertex reconstruction with the CMS tracker. JINST, 9:P10009, 2014.
    [93] S. Chatrchyan et al. The CMS Experiment at the CERN LHC. JINST, 3:S08004,
    2008.
    [94] A. Benaglia. The CMS ECAL performance with examples. JINST, 9:C02008,
    2014.
    [95] A. M. Sirunyan et al. Performance of the CMS muon detector and muon
    reconstruction with proton-proton collisions at ps = 13 TeV. JINST,
    13(06):P06015, 2018.
    [96] Vardan Khachatryan et al. Performance of photon reconstruction and identification
    with the CMS detector in proton-proton collisions at ps = 8 TeV.
    JINST, 10:P08010, 2015.
    205
    [97] R. Fruhwirth. Application of Kalman filtering to track and vertex fitting.
    Nucl. Instrum. Meth. A, 262:444–450, 1987.
    [98] Serguei Chatrchyan et al. Performance of CMS muon reconstruction in pp
    collision events at ps = 7 TeV. JINST, 7:P10002, 2012.
    [99] Serguei Chatrchyan et al. Alignment of the CMS tracker with LHC and cosmic
    ray data. JINST, 9:P06009, 2014.
    [100] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering
    algorithm. JHEP, 04:063, 2008.
    [101] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet user manual.
    Eur. Phys. J. C, 72:1896, 2012.
    [102] D Contardo, M Klute, J Mans, L Silvestris, and J Butler. Technical proposal
    for the Phase-II upgrade of the CMS detector. Technical Report CERNLHCC-
    2015-010. LHCC-P-008. CMS-TDR-15-02, Geneva, Jun 2015. Upgrade
    Project Leader Deputies: Lucia Silvestris (INFN-Bari), Jeremy Mans
    (University of Minnesota) Additional contacts: Lucia.Silvestris@cern.ch,
    Jeremy.Mans@cern.ch.
    [103] Simone Alioli, Paolo Nason, Carlo Oleari, and Emanuele Re. NLO Higgs boson
    production via gluon fusion matched with shower in POWHEG. JHEP,
    04:002, 2009.
    [104] Paolo Nason and Carlo Oleari. NLO Higgs boson production via vectorboson
    fusion matched with shower in POWHEG. JHEP, 02:037, 2010.
    [105] Torbjorn Sjöstrand, Stephen Mrenna, and Peter Z. Skands. A brief introduction
    to PYTHIA 8.1. Comput. Phys. Commun., 178:852, 2008.
    [106] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke,
    Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen,
    and Peter Z. Skands. An introduction to PYTHIA 8.2. Comput. Phys.
    Commun., 191:159, 2015.
    [107] Vardan Khachatryan et al. Event generator tunes obtained from underlying
    event and multiparton scattering measurements. Eur. Phys. J. C, 76:155, 2016.
    [108] Richard D. Ball et al. Parton distributions for the LHC Run II. JHEP, 04:040,
    2015.
    [109] Sandro Palestini. Angular distribution and rotations of frame in vector meson
    decays into lepton pairs. Phys. Rev. D, 83:031503, 2011.
    [110] Ali Abbasabadi, David Bowser-Chao, Duane A. Dicus, andWayneW. Repko.
    Radiative Higgs boson decays H ! f f g. Phys. Rev. D, 55:5647, 1997.
    206
    [111] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-
    S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation
    of tree-level and next-to-leading order differential cross sections, and their
    matching to parton shower simulations. JHEP, 07:079, 2014.
    [112] John M. Campbell and R. Ellis. MCFM for the Tevatron and the LHC. Nucl.
    Phys. Proc. Suppl., 205:10, 2010.
    [113] A. Bodek, A. van Dyne, J. Y. Han,W. Sakumoto, and A. Strelnikov. Extracting
    muon momentum xcale corrections for hadron collider experiments. Eur.
    Phys. J., C72:2194, 2012.
    [114] Serguei Chatrchyan et al. Measurement of the inclusiveW and Z production
    cross sections in pp collisions at ps = 7 TeV. JHEP, 10:132, 2011.
    [115] CMS Luminosity measurements for the 2016 data taking period. Technical
    Report CMS-PAS-LUM-17-001, 2017.
    [116] Jon Butterworth et al. PDF4LHC recommendations for LHC Run II. J. Phys.
    G, 43:023001, 2016.
    [117] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt. Parton distributions
    for the LHC. Eur. Phys. J. C, 63:189, 2009.
    [118] Hung-Liang Lai, Marco Guzzi, Joey Huston, Zhao Li, Pavel M. Nadolsky,
    Jon Pumplin, and C.-P. Yuan. New parton distributions for collider physics.
    Phys. Rev. D, 82:74024, 2010.
    [119] Sergey Alekhin et al. The PDF4LHC Working Group Interim Report. 2011.
    [120] Michiel Botje, Jon Butterworth, Amanda Cooper-Sarkar, Albert de Roeck,
    Joel Feltesse, Stephano Forte, Alexander Glazov, Joey Huston, Ronan Mc-
    Nulty, and Sjöstrand. The PDF4LHCWorking Group Interim Recommendations.
    2011.
    [121] Richard D. Ball, Valerio Bertone, Francesco Cerutti, Luigi Del Debbio, Stefano
    Forte, Alberto Guffanti, Jose I. Latorre, Juan Rojo, and Maria Ubiali. Impact
    of heavy quark masses on parton distributions and LHC phenomenology.
    Nucl. Phys. B, 849:296, 2011.
    [122] Giampiero Passarino. Higgs boson production and decay: Dalitz sector.
    Phys. Lett. B, 727:424, 2013.
    [123] Thomas Junk. Confidence level computation for combining searches with
    small statistics. Nucl. Instrum. Meth. A, 434:435, 1999.
    [124] Alexander L. Read. Presentation of search results: The CLs technique. J.
    Phys. G, 28:2693, 2002.
    207
    [125] ATLAS and CMS Collaborations, The LHC Higgs combination group. Procedure
    for the LHC Higgs boson search combination in Summer 2011. Technical
    Report CMS-NOTE-2011-005. ATL-PHYS-PUB-2011-11, 2011.
    [126] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae
    for likelihood-based tests of new physics. Eur. Phys. J. C, 71:1554, 2011.
    [Erratum: Eur. Phys. J.C 73,2501(2013)].
    [127] J. Neyman and E. S. Pearson. On the Problem of the Most Efficient Tests of
    Statistical Hypotheses, pages 73–108. Springer New York, New York, NY, 1992.
    [128] CMS Collaboration. The Phase-2 Upgrade of the CMS Endcap Calorimeter.
    Technical Report CERN-LHCC-2017-023. CMS-TDR-019, CERN, Geneva,
    Nov 2017. Technical Design Report of the endcap calorimeter for the Phase-2
    upgrade of the CMS experiment, in view of the HL-LHC run.
    [129] CMS Luminosity - Public Results. https://twiki.cern.ch/twiki/bin/
    view/CMSPublic/LumiPublicResults.
    [130] C. Adloff et al. Construction and Commissioning of the CALICE Analog
    Hadron Calorimeter Prototype. JINST, 5:P05004, 2010.
    [131] N. Akchurin et al. First beam tests of prototype silicon modules for
    the cms high granularity endcap calorimeter. Journal of Instrumentation,
    13(10):P10023, 2018.
    [132] M. Tanabashi et al. Review of particle physics. Phys. Rev. D, 98:030001, Aug
    2018.
    [133] XGBoost Documentation. https://xgboost.readthedocs.io/en/latest/.
    [134] Energy Reconstruction in TB Simulation. https://indico.cern.ch/
    event/770743/contributions/3205328/attachments/1747440/2829827/
    sim-energy-reco-11-06-18.pdf.

    QR CODE
    :::