| 研究生: |
陳宇翔 Yu-Xiang Chen |
|---|---|
| 論文名稱: |
低電壓驅動垂直有機電晶體之研究 Low Voltage driving Vertical Organic Transistors |
| 指導教授: |
張瑞芬
Jui-Fen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 垂直有機電晶體 、開孔電極結構 、高介電係數材料 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文應用膠體微影技術製作低驅動電壓的有機垂直電晶體,於研究中使用N型小分子有機半導體材料碳六十(C60),製作出高電流開/關比與足夠驅動有機發光二極體的有機垂直電晶體,且示範於垂直電晶體上堆疊有機發光二極體製作出有機發光電晶體元件的可行性。首先於二氧化矽/矽基板製作上出光的垂直有機發光電晶體;接下來將閘極改為透明導電膜(ITO),使用高介電係數的三氧化二鋁(Al2O3)作為介電層和高功函數的金源極製作垂直電晶體元件;膠體微影技術能夠於開孔金源極上方直接堆疊絕緣的氧化鋁(AlOx),在不影響開電流密度下,進一步為壓抑關電流密度與提高電流開/關比至一個數量級。整體製作出能以閘極電壓5 V驅動,開電流密度接近102 mA/cm2及開孔電流開/關比104的垂直有機電晶體,並以此架構製作下出光式發光電晶體,此研究未來可應用於穿透式雙向出光的有機發光電晶體。
This thesis applies colloidal lithography to fabricate vertical organic transistors with low driving voltage. In the study, N-type small-molecule organic semiconductor material carbon sixty (C60) is used to produce high on/off ratio vertical organic transistors which is sufficient to drive the organic light-emitting diode. And demonstrate a vertical organic light emitting transistor achieved by stacking an organic light emitting diode on top of a vertical organic transistor. First, fabricate a top emitting vertical organic light-emitting transistor formed on the SiO2 / Si substrate. Then change the gate to transparent conductive film, ITO, and deposit a high dielectric constant aluminum oxide (Al2O3) as dielectric layer. The device using patterned gold electrode as the source. The colloidal lithography technology can directly stack insulating aluminum oxide (AlOx) above the patterned gold source, further decreasing the off current density and increasing the on/off ratio to an order of magnitude without affecting the open current density. Overall, fabricated a vertical organic transistor capable of driving at a gate voltage of 5 V, while the on-current density close to 102 mA/cm2 and on/off ratio reaches 104. And using this structure to fabricate a substrate side emitting light-emitting transistor. Promising for a transmissivity bidirectional emitting light-emitting transistor in the future.
[1] C. L. Lin, T. T. Tsai, IEEE Electron Device Lett, 28 (2007) 489.
[2] K. Y. Wu, Y. T. Tao, C. C. Ho, W. L. Lee, T. P. Perng, Applied Physics Letters, 99 (2011) 093306 .
[3] Y. C. Chao, C. H. Chung, H. W. Zan, H. F. Meng, M. C. Ku, Applied Physics Letters, 99 (2011) 233308.
[4] Y. C. Chao, M. C. Ku, W. W. Tsai, H. W. Zan, H. F. Meng, H. K. Tsai, Sh. F. Horng, Applied Physics Letters, 97 (2010) 223307.
[5] H. C. Lin, H. W. Zan , Y. C. Chao, M. Y. Chang, H. F. Meng, Science , 30 (2015) 054003.
[6] T. Hiroi, M. Nakamura, e-Journal of Surface Science and Nanotechnology, 3 (2005) 327-331.
[7] K. Fujimoto, T. Hiroi, K. Kudo, and M. Nakamura, Advanced Materials, 19 (2007) 525.
[8] L. Ma, Y. Yang, Applied Physics Letters, 85 (2004) 5084.
[9] C. Y. Chen, Y. C. Chao, H. F. Meng, S. F. Horng, Applied Physics Letters, 93 (2008) 223301.
[10] K. Nakamura, T. Hate, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, Japanese Journal of Applied Physics, 47 (2008) 1889-1893.
[11] K. Nakamura, T. Hate, A. Yoshizawa, Applied Physics Letters, 89 (2006) 103525.
[12] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials, 20 (2008) 3605-3609.
[13] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science, 322 (2011) 570-573.
[14] W.D. Gill, Journal of Applied Physics, 43 (1972) 5033.
[15] K. Horiuchia, S. Uchinoa, K. Nakadaa, N. Aokia, M. Shimizub, Y. Ochiai, Physical B, 329–333 (2003) 1538–1539.
[16] Y. Kuzumoto, M. Kamura, S. Aomori, Applied Physics Letters, 91 (2007) 183514.
[17] A. Facchetti, M. Mushrush, H. E. Katz, T. J. Mark, Advanced Materials, 15 (2003) 33-38.
[18] B. Stadlober, M. Zirkl, M. Beutl, G. Leising, Applied Physics Letters, 86 (2005) 242902.
[19] P Saikia, P. K. Saikia, B. Baishya, Brazilian Journal of Physics, 40 (2010) 357-360.
[20] M. Kitamura1, Y. Arakawa, Journal of physics, 20 (2008) 184011.
[21] R. Hofmockel , U. Zschieschang , U. Kraft, R. Rödel , N. H. Hansen ,M. Stolte , F. Würthner, K.Takimiya ,K. Kern, J. Pflaum, H. Klauk, Science Direct, 14 (2013) 3213–3221.
[22] D. M. Taylor , E. R. Patchett , A. Williams , Z. Ding , H. E. Assender ,J. J. Morrison, S. G. Yeates, Science Direct, 456 (2015) 85–92.
[23] A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters, 100 (2012) 263306.
[24] O. Acton , M. Dubey , T. Weidner , K. M. O’Malley , T. W. Kim ,G. G. Ting , D. Hutchins , J. E. Baio , T. C. Lovejoy ,A. H. Gage ,D. G. Castner , H. Ma , A. K. Y. Jen, Advanced Functional Materials, 21 (2011) 1476-1488.
[25] S. Y. Yang, K. Shin, C. E. Park, Advanced Functional Materials, 15 (2005) 1860-1814.
[26] L. L. Chua, J. Zaumseil, J. F. Chang, E. C.W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature, 434 (2005) 192-199.
[27] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
[28] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express, 22 (2014) 14750.
[29] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater, 7 (2015) 2149-2152.
[30] M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, A. G. Rinzler, ACS Nano,6 (2012) 9095-9102.
[31] W. Chen, A. Rinzler, J. Guo, Journal of Applied Physics, 113 (2013) 094507.
[32] W. Chen, A. G. Rinzler, Jing Guo, Journal of Applied Physics, 113 (2013) 234501.
[33] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials, 20 (2008) 3605-3609.
[34] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A G. Rinzler, Science ,2305 (2004) 1273-1276.
[35] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science , 332 (2011) 570-573.
[36] H. Yu, Z. Dong, J. Guo, D. Kim, F. So, ACS Applied Mater, 8 (2016) 10430-10435.
[37]Lee, Gyujeong, et al., Journal of Applied Physics 121.2 (2017): 024502.
[38] M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963)
[39] C. W. Tang, and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) 913.
[40] M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Applied Physics Letters, 103 (2013) 073502.
[41] A. J. Ben-Sasson , N, Tessler, Nano Letter, 12 (2012) 4729-4733.
[42] A. J. Ben-Sasson , N. Tessler, Journal of Applied Physics, 110 (2011) 044501.
[43] Y. Preezant, N. Tesslera, Journal of Applied Physics, 93 (2003) 2059.
[44] A. J. Ben-Sasson , N. Tessler, Journal of Applied Physics, 110 (2011) 044501.
[45] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Applied Physics Letters, 67 (1995) 121.
[46] O. Acton, G. Ting, H. Ma, A. K. Y. Jen, Applied Physics Letters, 93 (2008) 083302.
[47] E. Itoh, Y. Higashimoto, K. Miyairi, Japanese Journal of Applied Physics, 47 (2008) 480-483.
[48] Th. B. Singha, N. S. Sariciftci, Applied Physics Letters, 90 (2007) 213512.
[49] Johnson, Richard W., Adam Hultqvist, and Stacey F. Bent, Materials today 17.5 (2014): 236-246.
[50] Ron, Hannoch, Sophie Matlis, and Israel Rubinstein. Langmuir 14.5 (1998): 1116-1121.