跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孟繁蕃
Feng-Feng Meng
論文名稱: 廣義相對論理論中之準局域質心距
Quasilocal center-of-mass moment in general relativity
指導教授: 聶斯特
JM Nester
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 90
語文別: 英文
論文頁數: 68
中文關鍵詞: 廣義相對論重力場準局域量質心距
外文關鍵詞: general relativity, quasilocal quantity, center-of-mass moment
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 既然重力場中不存在能量與動量之密度,則應致力於
    尋求各守恆量之準局域量.本文繼同一系列研究之後,探
    討在廣義相對論理論中之質心距之準局域量,由此非但可
    以再次驗証Nester-Chen expression之有效性,更能顯示
    質心距較其他守恆量對各種表示式理論提供更嚴格之檢驗
    標準


    Having recognized the absence of energy and momentum density for the gravitational field, conserved quasilocal quantities over finite 3- dimensional regions are the best that can be expected. Nester-Chen expression for the quasilocal center-of-mass moment was investigated.
    Not only the result agrees with the expectated asymptotical limit value but also the center-of-mass moment behaves as a more strict criteria for the validity of the expression.

    Chapter 1. Introduction ......................................1 §1. Outline .................................................1 §2. Mathematical notations ...................................2 §3. Absence of energy and momentum density ..................2 §4. Center-of-mass moment ...................................4 Chapter 2. General Lagrangian formulation ....................7 §1. δL .....................................................7 §2. H= ZμHμ+ dB ...........................................9 §3. Hμ is proportional to variational derivatives ..........10 §4. The role of B ..........................................11 §5. δH ...................................................12 Chapter 3. Lagrangian formulation in GR .....................16 §1. Various theories in relativity .........................16 §2. L EC in GR ..............................................18 §3. δL EC ..................................................20 §4. H and B ................................................22 §5. δH and C ..............................................23 §6. H vs. δH and B vs. C ..................................26 §7. ∫Σ H= -NP+ (1/2)λJ ..................................28 §8. Covariant Differentials ................................30 Chapter 4. Application in the Linearized theory of gravity ..34 §1. Introduction ...........................................34 §2. Basic quantities in weak- field limit ..................34 §3. Orders of magnitude ....................................40 §4. Quasilocal Quantities in Weak Fields ...................41 Chapter 5. Evaluation of the COM moment .....................44 §1. First- order expansion of quantities; Connections ......44 i. Metrics ...............................................44 ii. Metric Densities ......................................45 iii. △η, etc. ............................................46 iv. Connections ...........................................46 v. Expansion of N and DN .................................48 §2. Various B forms ........................................48 i. The Komar- type expressions ...........................49 ii. The Freud- type expressions ...........................50 §3. Evaluation of the conserved quantities .................51 i. P0 ....................................................52 ii. Pj’s and Jjk’s ........................................58 iii. J0j’s: the COM moments ................................58 Chapter 6. Conclusion and Discussion ........................65 References ..................................................68

    [ADM] R.Arnowitt, S.Deser and C.W.Misner, Phys. Rev. 122 (1961), 997
    [BO] R.Beig and N.O’Murchadha, Ann. Phys. 174 (1987) 463-98
    [BY] J.D.Brown and J.W.York, Jr., Phys. Rev. D 47 (1993) 1407-19
    [CNC99] C.C.Chang, J.M.Nester and C.M.Chen, Phys. Rev. Lett. 83 (1999) 1897-901
    [CNC00] C.C.Chang, J.M.Nester and C.M.Chen, Gravitation and Astrophysics, (World Scientific, 2000) pp163-173
    [Che] C.M.Chen, Quasilocal quantities for gravity theories (MSc thesis, 1994, NCU, unpublished)
    [Cha] C.C.Chang, The localization of gravitational energy – pseudotensors and quasilocal expressions (MSc thesis, 1998, NCU, unpublished)
    [CN99] C.M.Chen and J.M.Nester, Class.Quantum Grav. 16 (1999) 1279
    [CN00] C.M.Chen and J.M.Nester, Gravitation & Cosmology 6 (2000) 257
    [Dou] N.A.Doughty, Lagrangian interaction (Singapore, Addison-Wesley, 1990)
    [Fr] P.Freud, Ann. Math. 40 (1938) 417
    [Ha] K.Hayashi and T.Shirafuji, Prog. Phys. 64 (1980), 866, 883, 1435, & 2222
    [He76] F.W.Hehl, P.von der Heyde, G.D.Kerlik and J.M.Nester, Rev. Mod. Phys. 48 (1976) 393
    [He95] F.W.Hehl, J.D.McCrea, E.W.Mielke and Y.Ne’eman, Phys. Rep. 258 (1995) 1
    [KBL] J.Katz, J.Bicak and D. Lynden-Bell, Phys. Rev. D 55 (1997) 5957
    [Ko] A.Komar, Phys. Rev. 113 (1959) 934
    [Mo] C.MØller, Ann. Phys. (N.Y.) 12 (1961), 118
    [MTW] C.W.Misner, K.Thorne, and J.A.Wheeler, Gravitation (San Francisco, Freeman, 1973)
    [Vu] K.H.Vu, Quasilocal energy- momentum and energy momentum for Teleparallel gravity (MSc thesis, 2000, NCU, unpublished)

    QR CODE
    :::