| 研究生: |
陳韋辰 Wei-Chen Chen |
|---|---|
| 論文名稱: |
中南半島生質燃燒於長程傳輸路徑上之光學與化學特性探討 |
| 指導教授: |
林能暉
Neng-huei Lin 莊銘棟 Ming-Tung Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 生質燃燒 、大氣化學模式 、鹿林山 、氣膠光學厚度 、單次散射返照率 |
| 外文關鍵詞: | biomass burning, WRF-CHEM, Lulin, aerosol optical depth, single scattering albedo |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用WRF-CHEM ( Weather Research and Forecasting - Chemistry ) 模式模擬2010年3-4月七海計畫 (7SEAS, 7 South East Asian Studies)東沙實驗期間,生質燃燒煙流由中南半島長程傳輸至鹿林山,路徑上之化學以及光學特性變化。
鹿林山受到生質燃燒之不同事件日期間,依其不同天氣類型與軌跡路線將其分為兩類,第一種類型主要受到700 hPa等壓面上之西太平洋延伸高壓影響,第二種類型則主要以中南半島北方700 hPa槽線之影響為主,將兩種不同天氣類型時間之模式結果與衛星觀測相比,模擬結果顯示華北區域之氣膠光學厚度(AOD, Aerosol Optical Depth)與CO有低估,而生質燃燒煙流之分布則與觀測相近,因此模式結果在位於生質燃燒下游的鹿林山背景站有不錯的表現,一致性參數(IOA, Index Of Agreement)於CO、O3與PM10分別可達0.7、0.66與0.63,散射係數以及吸收係數則分別達到0.58與0.72,影響光學特性模擬好壞之差異主要來自質量濃度及局部環流之模擬準確性。單次散射返照率(SSA, Single Scattering Albedo)受山谷風影響,於模擬以及觀測結果上皆顯示晝高夜低之日變化。
為確認鹿林山事件日發生時,生質燃燒源區之影響以及瞭解煙流在軌跡上之光化學以及化學變化,本研究使用HYSPLIT軌跡模式(Draxler and Hess, 1998)推估鹿林山事件日發生前120小時煙流後推軌跡,結果發現煙流在通過源區一天至一天半後各氣膠成份以及氣體前驅物進入穩定狀態,直到抵達鹿林山皆無顯著變化,其中煙流內SSA之變化在進入生質燃燒源區後受到EC在PM10中之百分比增加而下降,而在離開源區後SSA之變化則與相對溼度十分類似。
This study utilized the WRF-CHEM( Weather Research and Forecasting - Chemistry ) model to evaluate the optical and chemical properties of biomass burning plµme along long-range transport pathway from Indochina to Mt.Lulin during the 7-SEAS(7 South East Asian Studies) / Dongsha Experiment in March and April of 2010.
This study divided the weather type into two categories by different weather characteristics and trajectories for biomass plµme seriously influencing Mt. Lulin. The first type was mainly affected by extension of the Pacific high pressure at 700 hPa level. The second type was controlled by troµgh over northern Indochina at 700 hPa. The evaluation of WRF-CHEM performance by comparing satellite observation shows that simulated results of CO and AOD underestimated over North China, however the simulated distribution of biomass plµme is similar to observations. The simulated CO, O3 and PM10 have good performance as compared with Mt.Lulin. observations. In terms of IOA (Index Of Agreement), one of statistics in simulation, CO, O3 and PM10 were 0.7, 0.66 and 0.63, respectively. For scattering coeffiecient and absorption coefficient, the IOA of these optical factorswere 0.58 and 0.72, respectively. When simulation was over or underestimated in PM10, the scattering and absorption coefficients almost have the same situation. Due to valley wind, simulated and observed results have diurnal pattern.
For confirming the Mt.Lulin episodes affected by bimass burning and the variation of optical and chemical properties along the trajectories, We used the HYSPLIT model (Draxler and Hess, 1998) to simulate the 120-hour backward trajectory. After air mass passed the biomass burning source region, parts of the precursor gases converted to aerosols. Obviously, after about one and a half day the BB chemical compositions reached a near-stable state. The pollutants didn’t have significant change until arriving Mt. Lulin. The variational pattern of SSA was affected by EC portion in PM10 when air mass pass throµgh biomass burning source region. After passed source region, the trend of SSA in the BB plµme was similar to relative hµmidity.
王寶貫,1996:雲物理學。渤海堂,台北市,382頁
林能暉、蔡錫祺、王家麟、李崇德、許桂榮(2010)鹿林山背景測站科技研究及操作維護計畫專案工作計畫。行政院環境保護署。
張佑嘉(2011)中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
劉承珏(2009)以光達觀測分析台北之邊界層與氣膠特性。國立台灣大學大氣科學研究所碩士論文。
Ackerman, T.P. and Toon, O.B. (1981) Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Applied Optics 20: 3661-3668.
Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S., and Shankar, U. (1998) Modal aerosol dynamics model for europe: Development and first applications. Atmospheric Environment 32: 2981-2999.
Akimoto, H. (2003) Global air quality and pollution. Science 302, 1716-1719.
Baek, J., Hu, Y., Odman, M.T., and Russell, A.G. (2011) Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds. Journal of Geophysical Research: Atmospheres 116: D22204.
Barnard, J.C., Fast, J.D., Paredes-Miranda, G., Arnott, W.P., and Laskin, A. (2010) Technical note: Evaluation of the WRF-chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign. Atmospheric Chemistry and Physics 10: 7325-7340.
Barnard, J.C., Chapman, E.G., Fast, J.D., Schmelzer, J.R., Slusser, J.R., and Shetter, R.E. (2004)An evaluation of the FAST-J photolysis algorithm for predicting nitrogen dioxide photolysis rates under clear and cloudy sky conditions. Atmospheric Environment 38: 3393-3403.
Bond, T.C., Habib, G., and Bergstrom, R.W. (2006) Limitations in the enhancement of visible light absorption due to mixing state. Journal of Geophysical Research: Atmospheres 111: D20211.
Charlson, R. J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen,J.E., and Hofman, D.J. (1992) Climate forcing byanthropogenic aerosols:Science255: 423-430.
Cheng, F.Y., Yang, Z.M., Ou-Yang, C.F., and Ngan, F. (2013) A nµmerical study of the dependence of long-range transport of CO to a mountain station in taiwan on synoptic weather patterns during the southeast asia biomass-burning season. Atmospheric Environment 78: 277-290.
Chou, M. and Suarez, M. (1994) An Efficient Thermal Infrared Radiation Parameterization for use in General Circulation Models. NASA Technology Memorandµm 104606 : Vol. 3, MD 20771.
Crutzen, P.J., and Goldammer, J.G. (1993).Fire in the Environment: the ecological, Atmospheric and Climatic importance of Vegetation Fires. 1st ed. Wiley, New York.
Draxler, R.R., and Hess, G.D. (1998)An overview of the HYSPLIT-4 modeling system fortrajectories, dispersion, deposition. Australian Meteorological Magazine 47: 295-308.
Dubovik, O., Holben, B.N., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanre, D., and Slutsker, I. (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, journal of the atmospheric science 59: 590-608.
Fast, J.D., Gustafson, W.I., Easter, R.C., Zaveri, R.A., Barnard, J.C., Chapman, E.G., Grell, G.A., and Peckham, S.E. (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of houston using a fully coupled meteorology-chemistry-aerosol model. Journal of Geophysical Research: Atmospheres 111: D21305.
Forkel, R., Werhahn, J., Hansen, A.B., McKeen, S., Peckham, S., Grell, G., and Suppan, P. (2012) Effect of aerosol-radiation feedback on regional air quality – A case study with WRF-Chem. Atmospheric Environment 53: 202-211.
Fu, J.S., Hsu, N.C., Gao, Y., Huang, K., Li, C., Lin, N.H., and Tsay, S.C. (2012) Evaluating the influences of biomass burning during 2006 BASE-ASIA: A regional chemical transport modeling. Atmospheric Chemistry and Physics 12: 3837-3855.
Fu, P., Kawamura, K., Chen, J., and Miyazaki, Y. (2014) Secondary production of organic aerosols from biogenic VOCs over mt. fuji, japan. Environmental science & technology 48: 8491-8497.
Gadhavi, H. and Jayaraman, A. (2010) Absorbing aerosols: Contribution of biomass burning and implications for radiative forcing. Annales Geophysicae 28, 103-111.
Gao, Y., Zhao, C., Liu, X., Zhang, M., and Leung, L.R. (2014) WRF-chem simulations of aerosols and anthropogenic aerosol radiative forcing in east asia. Atmospheric Environment 92, 250.
Gautam, R., Hsu, N.C., Eck, T.F., Holben, B.N., Janjai, S., Jantarach, T., Tsay, S., and Lau, W.K. (2013) Characterization of aerosols over the indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment 78: 51-59.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1984) Elemental and organic carbon particle concentrations: A long-term perspective. Science of The Total Environment 36: 17-25.
Grell, G.A. and Dévényi, D. (2002)A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters 29: 38-1-38-4.
Grell, G.A., Peckham,S.E., Schmitz, R., McKeen, S.A., Frost, G ., Skamarock, W.C., and Eder, B.(2005) Fully coupled 'online' chemistry in the WRF model. Atmospheric Environment 39:6957-6976.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., and Geron, C. (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmospheric Chemistry and Physics 6: 3181-3210.
Hodzic, A., Madronich, S., Aµmont, B., Lee-Taylor, J., Karl, T., Camredon, M., and Mouchel-Vallon, C. (2013) Limited influence of dry deposition of semivolatile organic vapors on secondary organic aerosol formation in the urban plµme. Geophysical Research Letters 40: 3302-3307.
Holton, J. R. (2004)An Introduction to Dynamic Meteorology.4th ed.Academic Press, Salt Lake.
Hong, S., Noh, Y., and Dudhia, J. (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134: 2318-2341.
Hsu, N.C., Herman, J.R., and Tsay, S. (2003) Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast asia. Geophysical Research Letters 30: 1224.
Huang, K., Fu, J.S., Hsu, N.C., Gao, Y., Dong, X., Tsay, S., and Lam, Y.F. (2013) Impact assessment of biomass burning on air quality in southeast and east asia during BASE-ASIA. Atmospheric Environment 78, 291.
Lin, C.Y., Hsu, H.m., Lee, Y.H., Kuo, C.H., Sheng, Y.F., and Chu, D.A. (2009) A new transport mechanism of biomass burning from indochina as identified by modeling studies. Atmospheric Chemistry and Physics 9: 7901-7911.
Lin, C., Zhao, C., Liu, X., Lin, N., and Chen, W. (2014). Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B, 66.
Lin, N.H., Tsay, S.C., Maring, H.B., Yen, M.C., Sheu, G.R., Wang, S.H., Chi, K.H., Chuang, M.T., Ou-Yang, C.F., Fu, J.S., Reid, J.S., Lee, C.T., Wang, L., Wang, J.L., Hsu, C.N., Sayer, A.M., Holben, B.N., Chu, Y.C., Nguyen, X.A., Sopajaree, K., Chen, S.J., Cheng, M.T., Tsuang, B.J., Tsai, C.J., Peng, C.M., Schnell, R.C., Conway, T., Chang, C.T., Lin, K.S., Tsai, Y.I., Lee, W.J., Chang, S.C., Liu, J.J., Chiang, W.L., Huang, S.J., Lin, T.H., Liu, G.R., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in southeast asia: From BASE-ASIA and the dongsha experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Liang, Q., Jaegle, L., and Wallace, J.M. (2005) Meteorological indices for Asian outflow and transpacific transport on daily to interannualtimescales, Journal of Geophysical Research 110:D18308.
Madronich, S. (2013) photolysis.pp. 33.in: WRF-CHEM 2013 Tutorial, Colorado, USA.
Markowicz, K.M., Flatau, P.J., Quinn, P.K., Carrico, C.M., Flatau, M.K., Vogelmann, A.M., Bates, D., Liu, M., and Rood, M.J. (2003) Influence of relative hµmidity on aerosol radiative forcing: An ACE-asia experiment perspective. Journal of Geophysical Research: Atmospheres 108.
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., and Cloµgh, S.A. (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres 102: 16663-16682.
Morrison, H., Thompson, G., and Tatarskii, V. (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Monthly Weather Review 137: 991-1007.
Murazaki, K. and Hess, P. (2006)How does climate change contribute to surface ozone change over the united states? Journal of Geophysical Research: Atmospheres 111: D05301.
Nemesure, S., Wagener, R., and Schwartz, S.E. (1995)Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative hµmidity. Journal of Geophysical Research: Atmospheres 100: 26105-26116.
Parrish, D.D., Hahn, C.J., Williams, E.J., Norton, R.B., Fehsenfeld, F.C., Singh, H.B., Shetter, J.D., Gandrud, B.W., and Ridley, B.A. (1992) Indications of photo-chemical histories of Pacific air masses from mesuremets of atmospheric trace species at Pt. Arena, California. Journal of Geophsical Research: Atmospheres 97: 15883-15901.
Quinn, P.K., Bates, T.S., Coffman, D., Onasch, T.B., Worsnop, D., Baynard, T., de Gouw, J.A., Goldan, P.D., Kuster, W.C., Williams, E., Roberts, J.M., Lerner, B., Stohl, A., Pettersson, A., and Lovejoy, E.R. (2006) Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the gulf of maine. Journal of Geophysical Research: Atmospheres 111: D23S36.
Ramanathan, V., Crutzen, P.J., Lelieveld, J., Mitra, A.P., Althausen, D., Anderson, J., Andreae, M.O., Cantrell, W., Cass, G.R., Chung, C.E., Clarke, A.D., Coakley, J.A., Collins, W.D., Conant, W.C., Dulac, F., Heintzenberg, J., Heymsfield, A.J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J.T., Krishnamurti, T.N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J.A., Podgorny, I.A., Prather, K., Priestley, K., Prospero, J.M., Quinn, P.K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S.K., Shaw, G.E., Sheridan, P., and Valero, F.P.J. (2001) Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great indo-asian haze. Journal of Geophysical Research: Atmospheres 106, 28371-28398.
Ramanathan, V., Li, F., Ramana, M.V., Praveen, P.S., Kim, D., Corrigan, C.E., Nguyen, H., Stone, E.A., Schauer, J.J., Carmichael, G.R., Adhikary, B., and Yoon, S.C. (2007) Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. Journal of Geophysical Research: Atmospheres 112: D22S21.
Reid, J.S., Hyer, E.J., Prins, E.M., Westphal, D.L., Jianglong, Z., Jun, W., Christopher, S.A., Curtis, C.A., Schmidt, C.C., Eleuterio, D.P., Richardson, K.A., and Hoffman, J.P. (2009) Global monitoring and forecasting of biomass-burning smoke: Description of and lessons from the fire locating and modeling of burning emissions (FLAMBE) program. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of 2: 144-162.
Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S., and Ebel, A. (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. Journal of Geophysical Research: Atmospheres 106: 28275-28293.
Seinfeld, J.H., and Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. Wiley-Interscience, New York.
Stockwell, W.R., Middleton, P., Chang, J.S., and Tang, X. (1990)The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research: Atmospheres 95: 16343-16367.
Twomey, S. (1974) Pollution and the planetary albedo.Atmospheric Environment8:1251-1256.
Wild, O. and Akimoto, H. (2001) Intercontinental transport of ozone and its precursors in a three-dimensional global CTM. Journal of Geophysical Research: Atmospheres 106, 27729-27744.
Yen, M., Peng, C., Chen, T., Chen, C., Lin, N., Tzeng, R., Lee, Y., and Lin, C. (2013) Climate and weather characteristics in association with the active fires in northern southeast asia and spring air pollution in taiwan during 2010 7-SEAS/Dongsha experiment. Atmospheric Environment 78: 35-50.
Zhang, Q., Streets, D.G., Carmichael, G.R., He, K.B., Huo, H., Kannari, A., Klimont, Z., Park, I.S., Reddy, S., Fu, J.S., Chen, D., Duan, L., Lei, Y., Wang, L.T., and Yao, Z.L. (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics 9: 5131-5153